scholarly journals ALGORITHM FOR DETERMINATION OF BRAKE EFFICIENCY OF INDUSTRIAL RAILWAY TRAINS

2021 ◽  
pp. 127-139
Author(s):  
Oleksandr Safronov ◽  
◽  
Yurii Vodiannikov ◽  
Olena Makeieva ◽  
Dmytro Yeskov

The main differences between the operating conditions of industrial railway transport from the main-line ones, which feature the performance of technological transportation, i.e., the transportation of goods within the local boundaries of enterprises (domestic technological transportation), and import (export) of goods to other modes of transport (external transportation). Industrial railway transport plays an important role at mining enterprises, as the working conditions of these enterprises are not constant and getting continuously more complicated during the entire period of field development. In this regard, one of the most important factors in ensuring the train safety is the braking efficiency. The calculation of the braking efficiency of a quarry train is performed according to special rules, and the parameters of the braking process that affect the braking distance are set by coefficients. As an estimated characteristic of braking efficiency for industrial railway transport, the maximum speed is taken, at which the braking distance should be no more than 300 m, regardless of the magnitude of the slope of the railway track. For the first time it is proposed to determine the allowable speed by the iterative method using a correction factor, the choice of which is due to the fact that the relationship between speed and braking distance is described by a quadratic function. The calculation showed that in five iterations the difference between the calculated and normative values of the braking distance of 0.01 m (1 cm) is achieved, which indicates the efficiency effect of the proposed determination procedure. The software allows you to automatically perform calculated studies for a given range of values of the slopes. The results of the train calculation in a specified range of slope values are given, as well as an analytical expression for determining the maximum speed for a given arbitrary slope value. Key words: allowable speed, braking distance, iterative process, correction factor, algorithm.

2021 ◽  
pp. 111-126
Author(s):  
Oleksandr Safronov ◽  
◽  
Yurii Vodiannikov ◽  
Pavlo Khozia ◽  
Anton Mozheiko

Improving the technical level of railway transport of industrial enterprises is expressed in the introduction of advanced types of traction (locomotives and electric locomotives), four and six-axle specialized cars, including self-unloading, automation and telemechanics. To increase the productivity of quarry trains at PJSC "Kryukiv Railway Car Building Plant" a six-axle dump car model 33-7141 for quarry railway transport was designed. The car is designed for transportation from quarries of open cut hard rocks, ore and other bulk and lump cargo with density (1.75-4.0) t/m3, as well as mechanized unloading on dumping sites or crushing units of opencast mining. A distinctive feature of innovative dump cars from typical ones is the increase of cargo weight by 10 t and axial load to 271.6 (27.7) kN (ts). In this regard, the issues of assessing the braking efficiency of a quarry train with innovative dump cars that meet the requirements for railway industrial transport are becoming relevant. The article presents the study results of the braking efficiency of a quarry train composition of 10 and 14 cars. Locomotive TEM7 and unit OPE1AM with one and two motor cars were considered as traction units. The maximum permissible speeds were determined in a given range of slopes of the railway track, and the maximum possible descent was set provided that the braking distance does not exceed or will be equal to 300. As a result of research, it was found that the maximum allowable deviations ranged from 34 ‰ to 38 ‰ depending on the number of cars and traction units. The speed of trains with innovative dump trucks on the site is 42 km/h. Key words: dump car, tipping wagon, maximum slope, permissible speed, braking distance, traction unit.


2020 ◽  
Vol 13 (2) ◽  
pp. 126-140
Author(s):  
Jing Gan ◽  
Xiaobin Fan ◽  
Zeng Song ◽  
Mingyue Zhang ◽  
Bin Zhao

Background: The power performance of an electric vehicle is the basic parameter. Traditional test equipment, such as the expensive chassis dynamometer, not only increases the cost of testing but also makes it impossible to measure all the performance parameters of an electric vehicle. Objective: A set of convenient, efficient and sensitive power measurement system for electric vehicles is developed to obtain the real-time power changes of hub-motor vehicles under various operating conditions, and the dynamic performance parameters of hub-motor vehicles are obtained through the system. Methods: Firstly, a set of on-board power test system is developed by using virtual instrument (Lab- VIEW). This test system can obtain the power changes of hub-motor vehicles under various operating conditions in real-time and save data in real-time. Then, the driving resistance of hub-motor vehicles is analyzed, and the power performance of hub-motor vehicles is studied in depth. The power testing system is proposed to test the input power of both ends of the driving motor, and the chassis dynamometer is combined to test so that the output efficiency of the driving motor can be easily obtained without disassembly. Finally, this method is used to carry out the road test and obtain the vehicle dynamic performance parameters. Results: The real-time current, voltage and power, maximum power, acceleration time and maximum speed of the vehicle can be obtained accurately by using the power test system in the real road experiment. Conclusion: The maximum power required by the two motors reaches about 9KW, and it takes about 20 seconds to reach the maximum speed. The total power required to maintain the maximum speed is about 7.8kw, and the maximum speed is 62km/h. In this article, various patents have been discussed.


Author(s):  
R.A. Gasumov ◽  
◽  
E.R. Gasumov ◽  

The article discusses the modes of movement of gas-liquid flows in relation to the operating conditions of waterlogged gas wells at a late stage of field development. Algorithms have been developed for calculating gas well operation modes based on experimental work under conditions that reproduce the actual operating conditions of flooded wells of Cenomanian gas deposits. The concept of calculating the technological mode of operation of gas wells with a single-row elevator according to the critical velocity of the upward flow is considered based on the study of the equilibrium conditions of two oppositely directed forces: the gravity of water drops directed downward and the lifting force moving water drops with a gas flow directed upward. A calculation was made according to the method of the averaged physical parameters of formation water and natural gas in the conditions of flooded Cenomanian gas wells in Western Siberia. The results of a study of the dependence of the critical flow rate of Cenomanian wells on bottomhole pressure and diameter of elevator pipes are presented.


Author(s):  
V.P. Sychev ◽  
D.V. Ovchinnikov ◽  
A.Yu. Abdurashitov ◽  
A.V. Sycheva

2021 ◽  
Author(s):  
Roberto Mosca ◽  
Shyang Maw Lim ◽  
Mihai Mihaescu

Abstract Under on-engine operating conditions, a turbocharger turbine is subject to a pulsating flow and, consequently, experiences deviations from the performance measured under continuous flow. Furthermore, due to the high exhaust gas temperatures, heat transfer further deteriorates the turbine performance. The complex interaction of the aerothermodynamic mechanisms occurring inside the hot-side, and consequently the turbine behavior, is largely affected by the shape of the pulse, which can be parameterized through three parameters: pulse amplitude, frequency, and temporal gradient. This paper investigates the hot-side system response to the pulse amplitude via a Detached Eddy Simulation (DES) approach of a radial turbocharger turbine system including exhaust manifold. Firstly, the computational model is validated against experimental data obtained under gas stand continuous flow conditions. Then, two different mass flow pulses, characterized by a pulse amplitude difference of ≈ 5%, are compared. An exergy-based post-processing approach shows the beneficial effects of increasing pulse amplitude. An improvement of the turbine power by 1.3%, despite the increment of the heat transfer and total internal irreversibilities by 5.8% and 3.4%, respectively, is reported. As a result of the higher maximum speed, internal losses by viscous friction are responsible for the growth of the total internal irreversibilities as pulse amplitude increases.


2021 ◽  
Author(s):  
Qasem Dashti ◽  
Saad Matar ◽  
Hanan Abdulrazzaq ◽  
Nouf Al-Shammari ◽  
Francy Franco ◽  
...  

Abstract A network modeling campaign for 15 surface gathering centers involving more than 1800 completion strings has helped to lay out different risks on the existing surface pipeline network facility and improved the screening of different business and action plans for the South East Kuwait (SEK) asset of Kuwait Oil Company. Well and network hydraulic models were created and calibrated to support engineers from field development, planning, and operations teams in evaluating the hydraulics of the production system for the identification of flow assurance problems and system optimization opportunities. Steady-state hydraulic models allowed the analysis of the integrated wells and surface network under multiple operational scenarios, providing an important input to improve the planning and decision-making process. The focus of this study was not only in obtaining an accurate representation of the physical dimension of well and surface network elements, but also in creating a tool that includes standard analytical workflows able to evaluate wells and surface network behavior, thus useful to provide insightful predictive capability and answering the business needs on maintaining oil production and controlling unwanted fluids such as water and gas. For this reason, the model needs to be flexible enough in covering different network operating conditions. With the hydraulic models, the evaluation and diagnosis of the asset for operational problems at well and network level will be faster and more effective, providing reliable solutions in the short- and long-terms. The hydraulic models enable engineers to investigate multiple scenarios to identify constraints and improve the operations performance and the planning process in SEK, with a focus on optimal operational parameters to establish effective wells drawdown, evaluation of artificial lifting requirements, optimal well segregation on gathering centers headers, identification of flow assurance problems and supporting production forecasts to ensure effective production management.


2021 ◽  
Author(s):  
Jim Browning ◽  
Sheldon Gorell

Abstract Economic optimization of a reservoir can be extremely tedious and time consuming. It is particularly difficult with many wells, some of which can become non-economic within the simulated time period. These problems can be mitigated by: 1) analyzing the results of a simulation once it has run, or 2) applying injection or production constraints at the well level. An example of option 1 would be integration with a spreadsheet or economic simulation package after the simulation has run. An example of option 2 would be to set a maximum water cut, upon which the well constraints could be changed, or the well could be shut in within the simulation. Both of these methods have drawbacks. If the goal is to account for how changes in a well operating strategy affects other wells, then analysis after the fact requires many runs to sequentially identify and modify well constraints at the correct times and in the correct order. In contrast, applying injection and production constraints to wells is not the same as applying true economic constraints. The objective of this work was to develop an automated method which includes economic considerations within the simulator to decrease the amount of time optimizing a single model and allows more time to analyze uncertainty within the economic decision making process. This study developed automated methods and procedures to include economic calculations within the context of a standard reservoir simulation. The method utilized modifications to available conditional logic features to internally include and export key economic metrics to support appropriate automatic field development changes. This method was tested using synthetic models with different amounts of wells and operating conditions. It was validated using after the fact calculations on a well by well basis to confirm the process. People costs are always among the most significant associated with running a business. Therefore, it is imperative for people to be as efficient and productive as possible. The method presented in this study significantly reduces the amount of time and effort associated with tedious and manual manipulations of simulation models. These savings enable an organization to focus on more value-added activities including, but not limited to, accurately optimizing and estimating of uncertainty associated decisions supported by reservoir simulation.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5275
Author(s):  
Michał Borecki

Calculation models for the selection of cable lines used for expansion and modernization in the energy system and energy transmission planning are recognized tools supporting decision-making in both the energy sector and energy policy. At the same time, the above calculation models contain a large number of correction factors taking into account the temperature of the external environment at various points, the mutual influence of which is not taken into account. This means limitations to today’s common approaches to solutions, especially with regard to the required safety buffer for cable line selection. To meet this challenge, this article presents a parameter that takes into account the change and difference in temperature at various points in the external environment in the analyzed cable line systems. The purpose of this paper was to develop a new approach to the selection of a cable line in order to minimize failure during operation. For this purpose, possible temperature cases that may occur during line operation in different countries and at different rated voltages have been identified. Simulation models for individual cable line layouts were developed and the extreme temperature cases of the line operation for the maximum negative and positive temperature difference between the cable core and the external environment were considered in detail. The development of the curve of the change of the correction factor for the difference in the operating temperature of the cable line will allow for a more precise selection of the cable line parameters and the shortening of the current calculation model in terms of cable selection. In addition, this article presents a comparison of the change in the value of the correction factor from the change in temperature of a selected phase of a cable line system.


2018 ◽  
Vol 230 ◽  
pp. 01003
Author(s):  
Oleksandr Darenskiy ◽  
Eduard Bielikov ◽  
Olexii Dudin ◽  
Alina Zvierieva ◽  
Anatolii Oleshchenko

The article considers obtaining numerical values of the coefficient of subgrade reaction of wooden and reinforced concrete sleepers with axial loads up to 30-35 tons per axle. It has been concluded that using the rolling stock with axial loads of up to 35 tons per axle is necessary in order to ensure sustainable development of the railway complex. The performance of the railway track thus should be investigated in order to predict its operation in such conditions. Generally, such studies are performed using numerical methods. One of the parameters that are required for such calculations is the parameter which is commonly called the coefficient of subgrade reaction. Empirical dependencies of the coefficient of subgrade reaction of wooden and reinforced concrete sleepers on the axial load and on the operating conditions of the track have been obtained. The obtained results can be used in studies of the interaction dynamics of the track of main railways with rolling stock with axial loads of 30-35 tons per axle, which will give an opportunity to provide well-grounded recommendations on the rules for the arrangement and maintenance of the track in such conditions.


2018 ◽  
Vol 230 ◽  
pp. 01017
Author(s):  
Anatoliy Shtompel ◽  
Liudmyla Trykoz ◽  
Dmytro Borodin ◽  
Andrii Ismagilov ◽  
Yaroslav Chmuzh

The permanent way components are of key importance for safe operation of a rail way. The country regulations, in particular in Ukraine, specify the operational life limits for the permanent way but they do not define any tool or method to predict deterioration of the permanent way condition over time. The study is aimed to develop a method for assessing failure risk of the permanent way components in operation. There was a method offered to evaluate risk of failure of the permanent way components of the welded tracks, which considers accumulated freight load on a rail section. Each element of the permanent way, such as rails, fasteners, sleepers, ballast layer, accumulates defects and deformations. The accumulation rate is different for the above components and depends on freight traffic. There was probability of failure-free operation calculated for each component for the first time and an integral fatigue index of the construction has been offered which considers freight traffic accumulated load. There was a mathematical failure forecast model developed which allows planning of track maintenance. The model allows to take into account operating conditions of a railway section. The results of simulation are presented in various diagrams.


Sign in / Sign up

Export Citation Format

Share Document