scholarly journals Cloud Point Extraction with Liquid Ion Exchange for Separation and Determination Magnesium (II) as anion

2021 ◽  
pp. 20-33
Author(s):  
Faris Hameed ◽  
Shawket K. Jawad

Liquid Ion Exchange joined with Cloud point extraction methodology was used for the separation of Magnesium (II) from aqueous and determine whereas 10 mL aqueous solution that contains 50 µg Mg2+ ion is complex with 1×10-3M 8-Hydroxy quinoline (8-HQ) at a suitable basic medium it well give higher extraction efficiency at optimum conditions, needs heating the aqueous solution in suitable temperature degree for enough time to form a cloud point layer (CPL). Therefore, the optimum conditions that yielded the good CPL have a small aggregation volume which is appropriate for continuing the ion pair association Complex between Magnesium ion and 8-Hydroxy quinoline.

2016 ◽  
Vol 13 (2) ◽  
pp. 470-479
Author(s):  
Baghdad Science Journal

This work was influenced the separation and preconcentration steps were carried out to determination of metformin (MET) in pharmaceutical preparations and human serum samples. Complex formation method and cloud-point extraction (CPE) coupling with UV-Visible spectrophotometry were used to investigated of study target.The results has showed the best optical characteristic for calibration curve and statistical data which were obtained under optimum conditions. The first method is based on the reaction of MET with nickel (II) in alkaline medium an absorption maximum ?)max) at 434nm. ''Beer's low'' is obeyed in the concentration range (10-100µg.ml-1) with molar absorptivity of 3.9x103 L.mol-1.cm-1.The limit of detection and quantitation values were 2.37 and7.11 µg.ml-1 respectively. The second method based on extraction of traces amounts of MET using the cloud-point extraction (CPE). This method implicated for using of a nonionic surfactant (Triton x-114) as an extraction medium which was entrap the hydrophobic complex formed between MET and nickel(ii) in basic medium as reaction system for designing the CPE procedure. The optimum conditions were similar the first method expect the amount of surfactant which was 0.5 ml. The concentrations range of calibration curve from 3.5to100 µg.ml-1 and molar absorptivity of 1.2x104 L.mol-1.cm-1. In this method was access to less of concentrations in Limit of detection and quantitation which were 0.74and 2.22 µg.ml-1 respectively. The precise (RSD %) and accuracy (recovery %) of both methods were ranged between 0.24-0.47, 97.86-98.68 respectively. The data of two methods were appeared high acceptable with standered of British Pharmacopoeia through using statistic methods (f-test and t-test), that they may be used in analysis of MET.


2020 ◽  
Vol 1 (1) ◽  
pp. 20-27

Cloud Point Extraction (CPE) as an effective method for pre-concentration and separation of cadmium from aqueous solution is widely utilized. This study involves a surfactant mediated CPE procedure in order to remove cadmium from waste water using Polythiophene nanoparticle and Triton X- 100 as a non – ionic surfactant. Polythiophene – coated iron nanoparticles was successfully synthesized with novel method and as a super magnetic nano-particles (MNPs) for cadmium removal from aqueous solution was evaluated. Polythophene nano-particles emulsifying method have been synthesized and fabricated. Fabricated nano-particle was characterized by Fourier-transform infrared spectroscopy (FTIR), and analysed transmission electron microscopy (SEM). Effects of pH, buffer volume, extraction time, temperature, amount of nano-particle were essentially investigated. To reach in optimum conditions, related experiments were replicated and accomplished as well. For removal of cadmium by CPE approach the optimization conditions were gained at pH = 7 , volume of buffer acid 1.5 millilitre , electrolyte concentration (NaCl) of 10 -3 mole L-1 , Trinton concentration 5 %, cloud point temperature 80 0 C , extraction time 40 minutes, and 5 mg of modified polythiophene nano-particle. The calibration graph was liner with a correlation coefficient of 0. 9984 and represents appropriate liner correlation with an amount and concentration. The results revealed that 5 gram of modified nanoparticle can significantly increase the efficiency of cadmium removal.


2020 ◽  
Vol 13 (12) ◽  
pp. 458
Author(s):  
Elżbieta Gniazdowska ◽  
Natalia Korytowska ◽  
Grzegorz Kłudka ◽  
Joanna Giebułtowicz

Cloud-point extraction (CPE) is rarely combined with liquid chromatography coupled to mass spectrometry (LC–MS) in drug determination due to the matrix effect (ME). However, we have recently shown that ME is not a limiting factor in CPE. Low extraction efficiency may be improved by salt addition, but none of the salts used in CPE are suitable for LC–MS. It is the first time that the influences of a volatile salt—ammonium acetate (AA)—on the CPE extraction efficiency and ME have been studied. Our modification of CPE included also the use of ethanol instead of acetonitrile to reduce the sample viscosity and make the method more environmentally friendly. We developed and validated CPE–LC–MS for the simultaneous determination of 21 antidepressants in plasma that can be useful for clinical and forensic toxicology. The selected parameters included Triton X-114 concentration (1.5 and 6%, w/v), concentration of AA (0, 10, 20 and 30%, w/v), and pH (3.5, 6.8 and 10.2). The addition of 10% of AA increased recovery twice. For 20 and 30% (w/v) of AA, three phases were formed that prolonged the extraction process. The developed CPE method (6% Triton X-114, 10% AA, pH 10.2) was successfully validated through LC–MS/MS simultaneous determination of 21 antidepressants in human plasma. The linearity was in the range of 10–750 ng/mL (r2 > 0.990).


2011 ◽  
Vol 8 (4) ◽  
pp. 1588-1595 ◽  
Author(s):  
Shahnaz Abedi ◽  
Farzin Nekouei

A surfactant mediated cloud point extraction (CPE) procedure has been developed to remove color from wastewater containing direct yellow 12 (Chrysophenine G), using triton x-100 (TX-100) as nonionic surfactant. The effects of the concentration of the surfactant, pH, temperature and salt concentration on the different concentration of dye have been studied and optimum conditions were obtained for the removal of direct yellow 12 (DY 12). The concentration of DY 12 in the dilute phase was measured using UV-Vis spectrophotometer. It was found that the separation of phases was complete and the recovery of DY 12 was very effective in the presence of NaCl as an electrolyte. The results showed that up to 600 mg L−1of DY 12 can quantitatively be removed (>96%) by Cloud point extraction procedure in a single extraction using optimum conditions.


2013 ◽  
Vol 699 ◽  
pp. 34-39
Author(s):  
Li Liu ◽  
Xia Shi Zhu

A new Triton X-114 cloud point extraction combined with fluorometry method for analysis of magnolol in drug samples was developed. Under the optimum conditions, the calibration graph was linear in the range of 2.0-150.0ng/mL of magnolol in the initial solution with r = 0.9998. Detection limit (DL) was 0.03ng/mL (S/N=3) and the relative standard deviation (RSD) for 20.0ng/mL of magnolol was 2.79%(n=11). The method was successfully applied for the determination of magnolol in drug samples with satisfactory results.


2019 ◽  
Vol 16 (2) ◽  
pp. 0332
Author(s):  
Dhahir Et al.

Two simple, rapid, and useful spectrophotometric methods were suggest or the determination of sulphadimidine sodium (SDMS) with and without using cloud point extraction technique in pure form and pharmaceutical preparation. The first  method was based on  diazotization of the Sulphdimidine Sodium drug by sodium nitrite at 5 ºC, followed by coupling with α –Naphthol in basic medium to form an orange colored product . The product was stabilized and its absorption was measured at 473 nm. Beer’s law was obeyed in the concentration range of (1-12) μg∙ml-1. Sandell’s sensitivity was 0.03012 μg∙cm-1, the detection limit was 0.0277 μg∙ml-1, and the limit of Quantitation was 0.03605μg∙ml-1.The second method was the cloud point extraction (CPE) using Trtion X-114 as surfactant. Beer’s law was obeyed in the concentration range of (1-12) μg∙ml-1. Sandell’s sensitivity was 0.02958 μg∙cm-1, the detection limit was 0.01745 μg∙ml-1, and the limit of quantitation was 0.028303 μg∙ml-1. All variables including the reagent concentration, reaction time, color stability period, and mole ratio were studied in order to optimize the reaction conditions. The mole ratio for the composition of product is (1:1). Both methods were effectively useful to the determination of sulphdimidine sodium in pharmaceutical dose form.  The attained results were in a good agreement with the official and other methods in the literature .No interference were observed from the commonly encountered additives and excipients.


2019 ◽  
Vol 11 (18) ◽  
pp. 2456-2464 ◽  
Author(s):  
D. Sai Krishna ◽  
N. N. Meeravali ◽  
Sunil Jai Kumar

A novel graphene oxide mediated microwave assisted cloud point extraction is developed in basic solution, for the extraction of ultra trace beryllium from natural water and plant waste water.


Sign in / Sign up

Export Citation Format

Share Document