scholarly journals Pattern and Trend of Land Surface Temperature Change on New Guinea Island

2020 ◽  
Vol 28 (4) ◽  
Author(s):  
Munawar ◽  
Tofan Agung Eka Prasetya ◽  
Rhysa McNeil ◽  
Rohana Jani

Global warming will have an impact on nature in many ways, including rising sea levels and an increasing spread of infectious diseases. Land surface temperature is one of the many indicators that can be used to measure climate change on both a local and global scale. This study aims to analyze the change in land surface temperatures on New Guinea Island using a cubic spline method, autoregressive model, and multivariate regression. New Guinea Island was divided into 5 regions each consisting of 9 subregions. The data of each subregion was obtained from the National Aeronautics and Space Administration moderate resolution imaging spectroradiometer database from 2000 to 2019. The average change in temperature was +0.012°C per decade. However, the changes differed by region; significantly decreasing in the northwest at -0.107°C per decade (95% CI: -0.207, -0.007), significantly increasing in the south at 0.201°C per decade (95% CI: 0.069, 0.333), and remaining stable in the centralnorth, southeast and northeast.

2021 ◽  
Author(s):  
Jin Ma ◽  
Ji Zhou

<p>As an important indicator of land-atmosphere energy interaction, land surface temperature (LST) plays an important role in the research of climate change, hydrology, and various land surface processes. Compared with traditional ground-based observation, satellite remote sensing provides the possibility to retrieve LST more efficiently over a global scale. Since the lack of global LST before, Ma et al., (2020) released a global 0.05 ×0.05  long-term (1981-2000) LST based on NOAA-7/9/11/14 AVHRR. The dataset includes three layers: (1) instantaneous LST, a product generated based on an ensemble of several split-window algorithms with a random forest (RF-SWA); (2) orbital-drift-corrected (ODC) LST, a drift-corrected version of RF-SWA LST at 14:30 solar time; and (3) monthly averages of ODC LST. To meet the requirement of the long-term application, e.g. climate change, the period of the LST is extended from 1981-2000 to 1981-2020 in this study. The LST from 2001 to 2020 are retrieved from NOAA-16/18/19 AVHRR with the same algorithm for NOAA-7/8/11/14 AVHRR. The train and test results based on the simulation data from SeeBor and TIGR atmospheric profiles show that the accuracy of the RF-SWA method for the three sensors is consistent with the previous four sensors, i.e. the mean bias error and standard deviation less than 0.10 K and 1.10 K, respectively, under the assumption that the maximum emissivity and water vapor content uncertainties are 0.04 and 1.0 g/cm<sup>2</sup>, respectively. The preliminary validation against <em>in-situ</em> LST also shows a similar accuracy, indicating that the accuracy of LST from 1981 to 2020 are consistent with each other. In the generation code, the new LST has been improved in terms of land surface emissivity estimation, identification of cloud pixel, and the ODC method in order to generate a more reliable LST dataset. Up to now, the new version LST product (1981-2020) is under generating and will be released soon in support of the scientific research community.</p>


2020 ◽  
Vol 12 (24) ◽  
pp. 4067
Author(s):  
Thanhtung Dang ◽  
Peng Yue ◽  
Felix Bachofer ◽  
Michael Wang ◽  
Mingda Zhang

Global warming-induced climate change evolved to be one of the most important research topics in Earth System Sciences, where remote sensing-based methods have shown great potential for detecting spatial temperature changes. This study utilized a time series of Landsat images to investigate the Land Surface Temperature (LST) of dry seasons between 1989 and 2019 in the Bac Binh district, Binh Thuan province, Vietnam. Our study aims to monitor LST change, and its relationship to land-cover change during the last 30 years. The results for the study area show that the share of Green Vegetation coverage has decreased rapidly for the dry season in recent years. The area covered by vegetation shrank between 1989 and 2019 by 29.44%. Our findings show that the LST increase and decrease trend is clearly related to the change of the main land-cover classes, namely Bare Land and Green Vegetation. For the same period, we find an average increase of absolute mean LST of 0.03 °C per year for over thirty years across all land-cover classes. For the dry season in 2005, the LST was extraordinarily high and the area with a LST exceeding 40 °C covered 64.10% of the total area. We expect that methodological approach and the findings can be applied to study change in LST, land-cover, and can contribute to climate change monitoring and forecasting of impacts in comparable regions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chunlei Meng ◽  
Huoqing Li

AbstractFengyun-4A is the new generation of Chinese geostationary meteorological satellites. Land surface albedo, land surface emissivity and land surface temperature are key states for land surface modelling. In this paper, the land surface albedo, land surface emissivity and land surface temperature data from Fengyun-4A were assimilated into the Integrated Urban land Model. The Fengyun-4A data are one of the data sources for the land data assimilation system which devoted to produce the high spatial and temporal resolution, multiple parameters near real-time land data sets. The Moderate-Resolution Imaging Spectroradiometer (MODIS) LSA and LSE data, the Institute of Atmospheric Physics, China Academy of Sciences (IAP) 325 m tower observation data and the observed 5 cm and 10 cm soil temperature data in more than 100 sites are used for validation. The results indicate the MODIS land surface albedo is much smaller than the Fengyun-4A and is superior to the Fengyun-4A for the Institute of Atmospheric Physics, China Academy of Sciences 325 m tower site. The Moderate-Resolution Imaging Spectroradiometer land surface emissivity is smaller than the Fengyun-4A in barren land surface and the differences is relatively small for other land use and land cover categories. In most regions of the research area, the Fengyun-4A land surface albedo and land surface emissivity are larger than those of the simulations. After the land surface albedo assimilation, in most regions the simulated net radiation was decreased. After the land surface emissivity assimilation, in most regions the simulated net radiation was increased. After the land surface temperature assimilation, the biases of the land surface temperature were decreased apparently; the biases of the daily average 5 cm and 10 cm soil temperature were decreased.


2020 ◽  
Author(s):  
Anthony Bernus ◽  
Catherine Ottle ◽  
Nina Raoult

<p>Lakes play a major role on local climate and boundary layer stratification. At global scale, they have been shown to have an impact on the energy budget, (see for example Le Moigne et al., 2016 or Bonan, 1995 ) . To represent the energy budget of lakes at a global scale, the FLake (Mironov et al, 2008) lake model has been coupled to the ORCHIDEE land surface model - the continental part of the IPSL earth system model. By including Flake in ORCHIDEE, we aim to improve the representation of land surface temperature and heat fluxes. Using the standard CMIP6 configuration of ORCHIDEE,  two 40-year simulations were generated (one coupled with FLake and one without) using the CRUJRA meteorological forcing data at a spatial resolution of 0.5°. We compare land surface temperatures and heat fluxes from the two ORCHIDEE simulations and assess the impacts of lakes on surface energy budgets. MODIS satellite land surface temperature products will be used to validate the simulations. We expect a better fit between the simulated land surface temperature and the MODIS data when the FLake configuration is used. The preliminary results of the comparison will be presented.</p>


2009 ◽  
Vol 22 (18) ◽  
pp. 4939-4952 ◽  
Author(s):  
Dietmar Dommenget

Abstract A characteristic feature of global warming is the land–sea contrast, with stronger warming over land than over oceans. Recent studies find that this land–sea contrast also exists in equilibrium global change scenarios, and it is caused by differences in the availability of surface moisture over land and oceans. In this study it is illustrated that this land–sea contrast exists also on interannual time scales and that the ocean–land interaction is strongly asymmetric. The land surface temperature is more sensitive to the oceans than the oceans are to the land surface temperature, which is related to the processes causing the land–sea contrast in global warming scenarios. It suggests that the ocean’s natural variability and change is leading to variability and change with enhanced magnitudes over the continents, causing much of the longer-time-scale (decadal) global-scale continental climate variability. Model simulations illustrate that continental warming due to anthropogenic forcing (e.g., the warming at the end of the last century or future climate change scenarios) is mostly (80%–90%) indirectly forced by the contemporaneous ocean warming, not directly by local radiative forcing.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2987 ◽  
Author(s):  
Jiancan Tan ◽  
Nusseiba NourEldeen ◽  
Kebiao Mao ◽  
Jiancheng Shi ◽  
Zhaoliang Li ◽  
...  

A convolutional neural network (CNN) algorithm was developed to retrieve the land surface temperature (LST) from Advanced Microwave Scanning Radiometer 2 (AMSR2) data in China. Reference data were selected using the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product to overcome the problem related to the need for synchronous ground observation data. The AMSR2 brightness temperature (TB) data and MODIS surface temperature data were randomly divided into training and test datasets, and a CNN was constructed to simulate passive microwave radiation transmission to invert the surface temperature. The twelve V/H channel combinations (7.3, 10.65, 18.7, 23.8, 36.5, 89 GHz) resulted in the most stable and accurate CNN retrieval model. Vertical polarizations performed better than horizontal polarizations; however, because CNNs rely heavily on large amounts of data, the combination of vertical and horizontal polarizations performed better than a single polarization. The retrievals in different regions indicated that the CNN accuracy was highest over large bare land areas. A comparison of the retrieval results with ground measurement data from meteorological stations yielded R2 = 0.987, RMSE = 2.69 K, and an average relative error of 2.57 K, which indicated that the accuracy of the CNN LST retrieval algorithm was high and the retrieval results can be applied to long-term LST sequence analysis in China.


Author(s):  
D. B. Shah ◽  
M. R. Pandya ◽  
A. Gujrati ◽  
H. J. Trivedi ◽  
R. P. Singh

Land Surface Temperature (LST) is an important parameter in the land surface processes on regional and global scale. The Land Surface Temperature Diurnal (LSTD) cycle of different land cover is an excellent indicator of the surface processes and their interaction with planetary boundary layer. The Kalpana-1 very high resolution radiometer (VHRR) LST product is available with 30 minute spatial resolution and 0.1 degree temporal resolution. A study was carried out with an objective to determine the LSTD parameters directly from K1-VHRR monthly averaged LST observations over Indian landmass. In this analysis, a harmonic function is fitted to LSTD from the K1-VHRR observations, where cosine term describing the effect of sun and exponential term represents decay of LST during nighttime. Using LSTD parameters, one can directly know the temperature amplitude, residual temperature and time of maximum temperature for each pixel. The LSTD parameters fitting accuracy in root mean square error (RMSE) and coefficient of determination (R<sup>2</sup>) ranges between 0.5&ndash;2.5 K and 0.90&ndash;0.99 respectively for most of the pixels over Indian landmass. These LSTD parameters may bring new insight for estimation of thermal inertia and also useful in cloud screening algorithms.


Author(s):  
Ravi Kumar ◽  
Anup Kumar

Land surface temperature (LST) represents hotness of the surface of the Earth at a particular location. Land surface temperature is useful for meteorological, climatological changes, heat island, agriculture, hydrological processes at local, regional and global scale. Presently many satellite sensor data are available for calculation of land surface temperature like Landsat 8 and MODIS. In the present study land surface temperature in Panchkula district of Haryana have been calculated using Landsat 8 satellite data of 5th May 2019 and 28th October 2019. Already available equations were used for computation of LST in the study area. LST in the study area varies from 18°C to 56°C. High LST is observed in cultivation land, urban area while low LST is observed in hilly forest area in the study area. In the study validation of LST could not be done because of not available of temperature data of studied dates, however, the result gives idea of land surface temperature on a particular day and location.


Sign in / Sign up

Export Citation Format

Share Document