scholarly journals Roles and Principles of Sterilisation Process in Palm Oil Mills

2021 ◽  
Vol 29 (4) ◽  
Author(s):  
Yin Mee Thang ◽  
Robiah Yunus ◽  
Mohd Noriznan Mokhtar ◽  
David Ross Appleton ◽  
Ahmad Jaril Asis ◽  
...  

Sterilisation in palm oil mills is considered a pre-treatment process as it affects stripping efficiency and oil quality. Although sterilisation technology has been well-established in the palm oil milling industry, the roles and principles of sterilisation, particularly related to the chemical changes in fruits and stalks occurring during the process, have been rarely reported. The review begins with the background literature on the biochemical properties of the FFBs, such as the compositions of binding carbohydrates and the phenomena of natural fruit detachment. Followed by the harvesting practice to understand the type of FFBs supplied to the industry. In addition, a comparison of the well-established conventional and alternative sterilisation technologies and sterilisation functions is critically reviewed and assessed. Establishing the current sterilisation process initiatives to address the natural fruit’s separation more efficiently in palm oil mills is important. Particularly visualise sterilisation as a breakup of specific binding carbohydrates that leads to strippability. It will provide a further understanding of the sterilisation mechanism, which would benefit the palm oil miller in optimising the processing of fresh fruit bunches. The information provided in this review is necessary to mitigate the percentage of unstripped bunches and reduce the oil losses and ultimately enhance the oil extraction rate.

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1030
Author(s):  
Arutchelvam Balakrishnan ◽  
Mohd Ibnur Syawal Zakaria ◽  
Bee Aik Tan ◽  
Jaime Yoke Sum Low ◽  
Shwu Fun Kua ◽  
...  

The processing of oil palm fresh fruit bunches (FFB), together with loose fruits, in the current mill operation contributes to oil loss and high free fatty acids (FFA), affecting crude palm oil quality. Fruit detachment induced by ethephon and ethylene may mitigate the current processing issues. This study shows that a 0.50% (v/v) ethephon application by the evaporation method induced the highest fruit detachment of 30.8 ± 1.1% after 24 h at room temperature, with the FFA content in the extracted crude palm oil at 0.34 ± 0.09%. Ethephon application was effective on bunches between 14 and 28 kg, and fruit detachment was higher in ripe and underripe bunches at 24.1 ± 0.9% and 23.2 ± 0.1%, respectively. A significant fruit detachment of 47.2 ± 2.4% was achieved when the bunches were also stripped mechanically, but the FFA content increased almost 4-fold, from 1.0 ± 0.2% to 3.8 ± 1.2%. The application of ethylene gas at 750 ppm yielded 29.4 ± 1.9% fruit detachment. The findings present the possibility of using ethylene as an indirect method for minimizing oil loss without increasing the FFA content in future crude palm oil production systems.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 806
Author(s):  
Norhisam Misron ◽  
Nisa Syakirah Kamal Azhar ◽  
Mohd Nizar Hamidon ◽  
Ishak Aris ◽  
Kunihisa Tashiro ◽  
...  

Oil palm is one of the key industries highly observed in Malaysia, due to its high demand both whether locally or internationally. The oil extraction rate (OER) in palm oil production is used as an element to identify the performance of the mills, estates and producers. In view of this, there are specific instrument or sensor needs to be implemented at the mills especially during the reception of fresh fruit bunches (FFB) transported from the field for oil content processing. This paper aims to study and propose the use of a fruit battery-based oil palm maturity sensor to analyse the effect of the sensor to various parameters. The study utilizes a charging method with different parameters, including a moisture content test on the palm oil samples. Three types of parameters are tested along with the different grades of oil palm fruit from different bunches, such as the load resistance, charging voltage and charging time. The repeatability data of the samples are obtained with the used list of values in each parameter. The results show that the parameters tested for the unripe, under ripe and ripe samples can affect the sensor sensitivity.


2014 ◽  
Vol 69 (5) ◽  
Author(s):  
Maya Sarah ◽  
Mohd Rozainee Taib ◽  
Abdul Adamu

The study on microwave irradiation and steam batch process to sterilize oil palm fruits is carried out to investigate their effectiveness on lipase inactivation. The inactivation parameters, palm oil quality, and stripping efficiency were evaluated. Evaluation on the inactivation parameters, such as decimal reduction time (D-value) and kinetic constant (k), were conducted to study the sterilization dependency on time and temperature. Microwave sterilization required only 14.085 to 16.949 minutes to inactivate lipase at temperature of 76.5°C (max), while steam batch sterilization required more than 90 minutes to obtained similar level of free fatty acid (FFA) at higher temperature (80 to 105°C). The quality of palm oil was indicated by the concentration of FFA in palm oil. Sterilization of either by microwave irradiation or steam batch sterilization reduced lipase’s activity significantly, which is indicated by FFA concentration of below 1%. Stripping efficiency from microwave sterilization at various power level after 16 minutes were 27% (medium power level), 58.5% (medium high power level), and 61% (high power level), respectively.


2011 ◽  
Vol 8 (s1) ◽  
pp. S67-S78 ◽  
Author(s):  
N. Saifuddin ◽  
S. Dinara

Chitosan is a natural organic polyelectrolyte of high molecular weight and charge density; obtained from deacetylation of chitin. This study explored the potential and effectiveness of applying chitosan-magnetite nanocomposite particles as a primary coagulant and flocculent, in comparison with chitosan for pre-treatment of palm oil mill effluent (POME). A series of batch coagulation processes with chitosan-magnetite nanocomposite particles and chitosan under different conditions,i.e. dosage and pH were conducted, in order to determine their optimum conditions. The performance was assessed in terms of turbidity, total suspended solids (TSS) and chemical oxygen demand (COD) reductions. Chitosan-magnetite particles showed better parameter reductions with much lower dosage consumption, compared to chitosan, even at the original pH of POME,i.e. 4.5. At pH 6, the optimum chitosan-magnetite dosage of 250 mg/L was able to reduce turbidity, TSS and COD levels by 98.8%, 97.6% and 62.5% respectively. At this pH, the coagulation of POME by chitosan-magnetite was brought by the combination of charge neutralization and polymer bridging mechanism. On the other hand, chitosan seems to require much higher dosage,i.e. 370 mg/L to achieve the best turbidity, TSS and COD reductions, which were 97.7%, 91.7% and 42.70%, respectively. The synergistic effect of cationic character of both the chitosan amino group and the magnetite ion in the pre-treatment process for POME brings about enhanced performance for effective agglomeration, adsorption and coagulation.


Food Research ◽  
2021 ◽  
Vol 5 (S1) ◽  
pp. 25-32
Author(s):  
T.H. Ong ◽  
M.H. Hamzah ◽  
H. Che Man

Response Surface Methodology (RSM) was applied to study the optimum condition of palm oil extraction from oil palm decanter cake (OPDC) using Soxhlet extraction and nhexane as solvent. The main objective of this study was to achieve maximum oil extraction by determining the optimum of two parameters such as reaction time and solid to solvent ratio. The optimum parameters were found to be at 4.92 hrs of reaction time and solid to solvent ratio of 1:10. The proposed model shows R2 value of 0.78 where the experimental parameters were significant to the result. The optimized data was employed for comparison of oil yield for OPDC without and with microwave pre-treatment. OPDC with microwave pre-treatment yielded 3.289±0.047 g of palm oil which was higher than OPDC without microwave pre-treatment which yielded only 3.107±0.085 g of palm oil. Fourier Transform Infrared Spectroscopy (FTIR) analysis also revealed the abundance of C-H alkene stretch and C=O stretch, two major functional groups indicated the presence of fatty acid within the palm oil derived from both samples. Scanning electron microscopy (SEM) of decanter cake provided evidence that the OPDC with pre-treatment has more shrinkage on the surface after Soxhlet extraction compared to OPDC without pretreatment. Results of this study revealed that RSM helps to optimize parameters in agricultural processing.


1986 ◽  
Vol 18 (9) ◽  
pp. 163-173
Author(s):  
R. Boll ◽  
R. Kayser

The Braunschweig wastewater land treatment system as the largest in Western Germany serves a population of about 270.000 and has an annual flow of around 22 Mio m3. The whole treatment process consists of three main components : a pre-treatment plant as an activated sludge process, a sprinkler irrigation area of 3.000 ha of farmland and an old sewage farm of 200 ha with surface flooding. This paper briefly summarizes the experiences with management and operation of the system, the treatment results with reference to environmental impact, development of agriculture and some financial aspects.


2018 ◽  
Vol 2018 (4) ◽  
pp. 103-117
Author(s):  
Bipin Pathak ◽  
Ahmed Al-Omari ◽  
Scott Smith ◽  
Nicholas Passarelli ◽  
Ryu Suzuki ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Anita Ejiro Nwaefuna ◽  
Karl Rumbold ◽  
Teun Boekhout ◽  
Nerve Zhou

AbstractBioethanol from abundant and inexpensive agricultural and industrial wastes possesses the potential to reduce greenhouse gas emissions. Bioethanol as renewable fuel addresses elevated production costs, as well as food security concerns. Although technical advancements in simultaneous saccharification and fermentation have reduced the cost of production, one major drawback of this technology is that the pre-treatment process creates environmental stressors inhibitory to fermentative yeasts subsequently reducing bioethanol productivity. Robust fermentative yeasts with extreme stress tolerance remain limited. This review presents the potential of dung beetles from pristine and unexplored environments as an attractive source of extremophilic bioethanolic yeasts. Dung beetles survive on a recalcitrant lignocellulose-rich diet suggesting the presence of symbiotic yeasts with a cellulolytic potential. Dung beetles inhabiting extreme stress environments have the potential to harbour yeasts with the ability to withstand inhibitory environmental stresses typically associated with bioethanol production. The review further discusses established methods used to isolate bioethanolic yeasts, from dung beetles.


2021 ◽  
Vol 22 (4) ◽  
pp. 1645
Author(s):  
Daniel Gündel ◽  
Masoud Sadeghzadeh ◽  
Winnie Deuther-Conrad ◽  
Barbara Wenzel ◽  
Paul Cumming ◽  
...  

The expression of monocarboxylate transporters (MCTs) is linked to pathophysiological changes in diseases, including cancer, such that MCTs could potentially serve as diagnostic markers or therapeutic targets. We recently developed [18F]FACH as a radiotracer for non-invasive molecular imaging of MCTs by positron emission tomography (PET). The aim of this study was to evaluate further the specificity, metabolic stability, and pharmacokinetics of [18F]FACH in healthy mice and piglets. We measured the [18F]FACH plasma protein binding fractions in mice and piglets and the specific binding in cryosections of murine kidney and lung. The biodistribution of [18F]FACH was evaluated by tissue sampling ex vivo and by dynamic PET/MRI in vivo, with and without pre-treatment by the MCT inhibitor α-CCA-Na or the reference compound, FACH-Na. Additionally, we performed compartmental modelling of the PET signal in kidney cortex and liver. Saturation binding studies in kidney cortex cryosections indicated a KD of 118 ± 12 nM and Bmax of 6.0 pmol/mg wet weight. The specificity of [18F]FACH uptake in the kidney cortex was confirmed in vivo by reductions in AUC0–60min after pre-treatment with α-CCA-Na in mice (−47%) and in piglets (−66%). [18F]FACH was metabolically stable in mouse, but polar radio-metabolites were present in plasma and tissues of piglets. The [18F]FACH binding potential (BPND) in the kidney cortex was approximately 1.3 in mice. The MCT1 specificity of [18F]FACH uptake was confirmed by displacement studies in 4T1 cells. [18F]FACH has suitable properties for the detection of the MCTs in kidney, and thus has potential as a molecular imaging tool for MCT-related pathologies, which should next be assessed in relevant disease models.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Yeit Haan Teow ◽  
Meng Teck Chong ◽  
Kah Chun Ho ◽  
Abdul Wahab Mohammad

AbstractAiming to mitigate wastewater pollution arising from the palm oil industry, this university-industry research-and-development project focused on the integration of serial treatment processes, including the use of moving bed biofilm reactor (MBBR), pre-treatment with sand filters and activated carbon filters, and membrane technology for aerobically-digested palm oil mill effluent (POME) treatment. To assess the potential of this sustainable alternative practice in the industry, the developed technology was demonstrated in a pilot-scale facility: four combinations (Combinations I to IV) of unit operations were developed in an integrated membrane-filtration system. Combination I includes a MBBR, pre-treatment unit comprising sand filters and activated carbon filters, ultrafiltration (UF) membrane, and reverse osmosis (RO) membrane, while Combination II excludes MBBR, Combination III excludes UF membrane, and Combination IV excludes both MBBR and UF membrane. Life cycle assessment (LCA) was performed to evaluate potential environmental impacts arising from each combination while achieving the goal of obtaining recycled and reusable water from the aerobically-digested POME treatment. It is reported that electricity consumption is the predominant factor contributing to most of those categories (50–77%) as the emissions of carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen oxides, and volatile mercury during the combustion of fossil fuels. Combination I in the integrated membrane-filtration system with all unit operations incurring high electricity consumption (52 MJ) contributed to the greatest environmental impact. Electricity consumption registers the highest impact towards all life cycle impact categories: 73% on climate change, 80% on terrestrial acidification, 51% on eutrophication, and 43% on human toxicity. Conversely, Combination IV is the most environmentally-friendly process, since it involves only two-unit operations – pre-treatment unit (comprising sand filters and activated carbon filters) and RO membrane unit – and thus incurs the least electricity consumption (41.6 MJ). The LCA offers insights into each combination of the operating process and facilitates both researchers and the industry towards sustainable production.


Sign in / Sign up

Export Citation Format

Share Document