scholarly journals Impact of Plug-in Electric Vehicles Integrated into Power Distribution System based on Voltage Dependent Power Flow

Author(s):  
Yuttana Kongjeen ◽  
Krischonme Bhumkittipich

This paper proposes the impact of plug-in electric vehicles integrated into power distribution system based on voltage dependent control. The plug-in electric vehicles was modeled as the static load model in power distribution systems under balanced load condition. The power flow analysis is determined by using the basic parameters of the electrical network. The main point of this study are compare with voltage magnitude profiles, load voltage deviation, and total power losses of the electrical power system. There are investigating the affected from constant power load, constant current load, constant impedance load and plug-in electric vehicles load, respectively. The IEEE 33 bus test system is used to test the proposed method by assigning each load type to a balanced load in steady state and applied the solving methodology based on the bus injection to branch injection matric, branch current to bus voltage matrix, and current injection matrix to solve the power flow problem. The simulation results showed that the plug-in electric vehicles load had the lowest impact compared to other loads. The lowest plug-in values for the electric vehicle loads were 0.062, 119.67 kW and 79.31 kVar for the load voltage deviation, total active power loss and total reactive power loss, respectively. Therefore, this study can be verified that the plug-in electric vehicles load were affected to the lowest of the electrical power system in condition to same sizing and position. So that, in condition to the plug-in electric vehicles load added into the electrical power system with the conventional load type or complex load type could be considered that the affected from the plug-in electric vehicles load in next study.

2013 ◽  
Vol 791-793 ◽  
pp. 1889-1891
Author(s):  
Yan Li Fan ◽  
Qing En Li

The low-voltage distribution system is the key component of the electrical power system. Some analysis and research of the low-voltage distribution system is carried out in this paper, which provides some scientific basis to design the low-voltage distribution system. Firstly, the summarize of low-voltage distribution system is taken. The influence to productions and livings of low-voltage distribution system is introduced. Secondly, the mode of connection and design philosophy of low-voltage distribution system is studied in detail, especially the high-rise buildings low-voltage distribution system is concluded and summarized.


2020 ◽  
Vol 124 (1281) ◽  
pp. 1789-1797
Author(s):  
M. Bekhti ◽  
M. Bensaada ◽  
M. Beldjehem

ABSTRACTOne of the most critical aspects of a small satellite is the electrical power system (EPS) since the electrical power is necessary for the satellite to operate correctly during its predefined lifetime. The electrical power system consists mainly of solar cells, batteries, voltage converters and protection circuits. The electrical power system is responsible of providing stable power to the rest of the satellite subsystems.In satellite electrical power systems, overcurrent protection is now becoming an important function handled by the power distribution module (PDM). This paper proposes a method to evaluate the suggested protection. With the proposed procedure we should be able to verify that every possible failure does not travel through the EPS and cause a fatal degradation of the electrical power system. This will allow a complete evaluation of functionality of the protection hardware.This paper discusses the design and implementation of the power distribution module (PDM) for the coming generation of small satellites for the Algerian Space Agency (ASAL). The design must provide a reliable protection for the subsystems from the overcurrent associated with a device failure.


Author(s):  
Pratul Arvind ◽  
Rudra prakash Maheswari

Electric Power Distribution System is a complex network of electrical power system. Also, large number of lines on a distribution system experiences regular faults which lead to high value of current. Speedy and precise fault location plays a pivotal role in accelerating system restoration which is a need of modern day. Unlike transmission system which involves a simple connection, distribution system has a very complicated structure thereby making it a herculean task to design the network for computational analysis. In this paper, the authors have simulated IEEE 13- node distribution system using PSCAD which is an unbalanced system and current samples are generated at the substation end. A Fuzzy c-mean (FCM) and statistical based approach has been used. Samples are transformed as clusters by use of FCM and fed to Expectation- Maximization (EM) algorithm for classifying and locating faults in an unbalanced distribution system. Further, it is to be kept in mind that the combination has not been used for the above purpose as per the literature available till date.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4826
Author(s):  
Steffen Meinecke ◽  
Leon Thurner ◽  
Martin Braun

Publicly available grid datasets with electric steady-state equivalent circuit models are crucial for the development and comparison of a variety of power system simulation tools and algorithms. Such algorithms are essential to analyze and improve the integration of distributed energy resources (DERs) in electrical power systems. Increased penetration of DERs, new technologies, and changing regulatory frameworks require the continuous development of the grid infrastructure. As a result, the number and versatility of grid datasets, which are required in power system research, increases. Furthermore, the used grids are created by different methods and intentions. This paper gives orientation within these developments: First, a concise overview of well-known, publicly available grid datasets is provided. Second, background information on the compilation of the grid datasets, including different methods, intentions and data origins, is reviewed and characterized. Third, common terms to describe electric steady-state distribution grids, such as representative grid or benchmark grid, are assembled and reviewed. Recommendations for the use of these grid terms are made.


2018 ◽  
Vol 12 (4) ◽  
pp. 244-250 ◽  
Author(s):  
Mohammad Ghiasi

Overall, a power-flow study is a steady-state assessment whose goal is to specify the currents, voltages, and real and reactive flows in a power system under a given load conditions. This paper presents a comparison of common power flow techniques in the Tehran metro power distribution system at the presence of non-linear loads. Moreover, a modelling, simulation and analysis of this power distribution system is implemented with the Electrical Transient Analyser Program (ETAP) software. In this assessment, common power flow techniques including the Newton-Raphson (NR), Fast Decoupled (FD), and Accelerated Gauss-Seidel (AGS) techniques are provided and compared. The obtained results (total generation, loading, demand, system losses, and critical report of the power flow) are analysed. In this paper, we focus on the detailed assessment and monitoring by using the most modern ETAP software, which performs numerical calculations of a large integrated power system with fabulous speed and also generates output reports. The capability and effectiveness of the power flow analysis are demonstrated according to the simulation results obtained with ETAP by applying it to the power distribution system of the Tehran metro. In developing countries such as Iran, off-line modelling and simulation of power grids by a powerful software are beneficial and helpful for the best usage of the electrical energy.


2011 ◽  
Vol 403-408 ◽  
pp. 5007-5014
Author(s):  
Pratul Arvind ◽  
Rudra Prakash Maheshwari

Electric Power Distribution System is a complex network of electrical power system. Also, large number of lines on a distribution system experiences regular faults which lead to high value of current. Speedy and precise fault location plays a pivotal role in accelerating system restoration which is a need of modern day. Unlike transmission system which involves a simple connection, distribution system has a very complicated structure thereby making it a herculean task to design the network for computational analysis. In this paper, the authors have simulated IEEE 13- node distribution system using PSCAD which is an unbalanced system and current samples are generated at the substation end. Considering the application of signal processing tools to power systems a talk of modern day research, Gabor decomposition of the current samples are also presented which is utilised for locating all ten types of faults. It is kept in mind that Gabor transform has not been applied to current samples of distribution system as per the literature available till date.


2021 ◽  
Vol 11 (12) ◽  
pp. 5446
Author(s):  
Marzia Caldora ◽  
Maria Carmen Falvo ◽  
Alessandro Lampasi ◽  
Gianluca Marelli

The realization of the Divertor Tokamak Test (DTT) facility is one of the key milestones of the European Roadmap, aiming to explore alternative power exhaust solutions for DEMO, the first nuclear-fusion power plant that will be connected to the European grid. For the actual implementation of the DTT and DEMO plants, it is necessary to define the structure of the internal electric power distribution system, able to supply unconventional loads with a sufficient level of reliability. The present paper reports the preliminary studies for the feasibility and realization of the electrical power systems of DTT, describing the methodology adopted to obtain a first distribution configuration and providing some simulation results. In particular, the first stage of the study deals with the survey and characterization of the electrical loads, which allows defining a general layout of the facility and size the main electrical components. To verify the correctness of the assumptions, simulation models of the grid were implemented in the DIgSILENT PowerFactory software in order to carry out power flow and fault analyses.


2021 ◽  
Vol 6 (2) ◽  
pp. 1422
Author(s):  
Doni Abdul Mukti ◽  
Budi Sudiarto

Protection is a safety in the electric power system installed in the electric power distribution system, power transformer, electric power transmission, and electric generator used to secure the power system electricity from electrical disturbances or overloads by separating the disturbed parts of the electric power system from the undisturbed electrical power system so that the undisturbed electrical system can continue to work. The protection system at the T75B substation has a work failure where when there is a short circuit on the consumer side, it causes the PMT (Power Breaker) for the Malibu Feeder at the Kebon Sirih Substation to trip while the CBO (Circuit Breaker Outgoing) cubicle at the T75B substation does not trip. This resulted in an unexpected widespread blackout. To find out the cause of the failure of the protection system, several tests and analyzes were carried out, namely protection design testing, protection relay coordination testing, protection system construction analysis, protection equipment performance testing. It is hoped that the test results can be used as a reference for improvement so that similar failures do not recur.


2016 ◽  
Vol 856 ◽  
pp. 331-336
Author(s):  
Rexhep Shaqiri

This paper contains a strategy to minimize the power losses in the electrical distribution network of Kosovo. In order to develop the strategy, a model was constructed to simulate an electrical distribution network, and different parameters were included that helped in estimation of the technical power losses in the medium voltage (MV) distribution network. The main objective of this paper is to present approach to minimize technical and non-technical losses in power systems. The analysis of the Kosovo electric power system was performed by means of PSS/E 3.3 software. The results indicate options for reduction of the loses by replacement of old type of transformers and preparation of the MV system for upgrade and change the voltage level from 10 kV to 20 kV. As a first step new 110/10kV transformers can be installed, designed to be reconnected in the future to 110/20kV.


Sign in / Sign up

Export Citation Format

Share Document