scholarly journals A SPACE VECTOR PWM SCHEME FOR NEUTRAL POINT CLAMPED MULTILEVEL INVERTERS

Author(s):  
SRIHARIRAO NAMBALLA ◽  
T VAMSEE KIRAN

Multilevel inverters are increasingly being used in high power medium voltage applications when compared to two level inverter due to their merits, such as lower common mode voltage, lower dv/dt, lower harmonics in output voltage and current. Among various modulation techniques for a multilevel inverter, space vector pulse width modulation is poplar due to the merits like, it directly uses the control variable given by the control system and identifies each switching vector as a point in complex space. However the implementation of the SVPWM for a multilevel inverter is complicated. The complexity is due to the difficulty in determining the location of the reference vector, the calculations of on times and the determination and selection of switching states. The multilevel SVPWM method uses the concepts of two level modulations to calculate the on times of an n-level inverter. Use of multilevel inverters has become popular for motor drive applications. Various topologies and modulation strategies will be studied from the available literature. This work is devoted to the study and simulation of a new NPC multilevel inverter system typically suitable for high-performance high-power applications. Simulation of this work will be done in MATLAB/Simulink .

Author(s):  
D. Sandhya Rani ◽  
A. Appaprao

Multilevel inverters are increasingly being used in high-power medium voltage applications due to their superior performance compared to two-level inverters. Among various modulation techniques for a multilevel inverter, the space vector pulse width modulation (SVPWM) is widely used. The complexity is due to the difficulty in determining the location of the reference vector, the calculation of ontimes, and the determination and selection of switching states. This paper proposes a general SVPWM algorithm for multilevel inverters based on standard two-level SVPWM. Since the proposed multilevel SVPWM method uses two-level modulation to calculate the on-times, the computation of on-times for an n-level inverter becomes easier. The proposed method uses a simple mapping to achieve the SVPWM for a multilevel inverter. A general n-level implementation is explained, and experimental results are given for two-level and three-level inverters.


Author(s):  
K. VARALAKSHMI ◽  
K. BALAKRISHNA

This paper proposes a generalized method for the generation of space vector pulse width modulation (SVPWM) signals for multilevel inverters. In the proposed method, the actual sector containing the tip of the reference space vector need not be identified. A method is presented to identify the center of a sub hexagon containing the reference space vector. Using the center of the sub hexagon, the reference space vector is mapped to the innermost sub hexagon, and the switching sequence corresponding to a two-level inverter is determined. A new technique is proposed in this paper, by which these two-level vectors are translated to the switching vectors of the multilevel inverter by adding the center of the sub hexagon to the two-level vectors. The proposed method can be extended to any n-level inverter, and a generalized algorithm is proposed. The scheme is explained for a five-level inverter, and experimental results are presented for a three-level inverter and seven level Inverter.


Author(s):  
M. Ranjitha ◽  
S. Ravivarman

<p>Multilevel inverters are used in high power and medium voltage applications. Employing multilevel inverter with renewable energy alone, the voltage balance cannot be made because the number of level increases in multilevel inverter the control gets complexity. So voltage imbalance problems are introduced. The voltage imbalance problems can be classified into two types; Midpoint unbalance and the central capacitor discharge. These problems can be solved by using voltage balancing solutions. The solutions are hardware based; software based, and combined solutions. By using these types of solutions the voltage balancing problems can be solved and the efficiency of multilevel inverter could be high. This paper reviews about various voltage balancing solutions in multilevel inverter.<strong></strong></p>


Author(s):  
Hashim Hasabelrasul ◽  
Xiangwu Yan

<p>One of the preferred choices of electronic power conversion for high power applications are multilevel inverters topologies finding increased attention in industry. Cascaded H-Bridge multilevel inverter is one of these topologies reaching the higher output voltage, power level and higher reliability due to its modular topology. Level Shifted Carrier Pulse Width Modulation (LSCPWM) and Phase Shifted Carrier Pulse Width Modulation are used generally for switching cascaded H-bridge (CHB) multilevel inverters. This paper compares LSCPWM and PSCPWM in terms of total harmonics distortion (THD) and output voltage among inverter cells. Simulation for 21-level CHB inverter is carried out in MATLAB/SIMULINK and simulation results are presented.</p>


2016 ◽  
Vol 78 (5-8) ◽  
Author(s):  
N.S.M. Nazar ◽  
S. Thanakodi ◽  
N.A. Othman ◽  
H.D.M. Hidzir ◽  
M.S. Mat

It has been accepted that conventional inverters have limitation dealing with high voltage and high power applications. Lately, multilevel inverters are popular for high power applications due to its improved harmonic profile and increased power ratings. There are various literatures regarding topology and control techniques of multilevel inverters. This paper presents the performance of two Flying Capacitor Multilevel Inverter (FCMI) topologies particularly a 3-level and 5-level multilevel inverters. Besides that, concept of the topologies and its modulation techniques were described. Sinusoidal pulse width modulation (SPWM) techniques were utilized in this paper as the topologies control strategy. Two control parameters, namely the amplitude modulation index, ma and the frequency modulation index, mfwere varied in order to control the output voltage of the inverters. The model and simulation study were carried out using Matlab/Simulink software. Analyses on the performance of the two topologies were based on the fundamental voltage, output voltage waveform, output harmonic spectrum and total harmonic distortion (THD). It’s found that the five level FCMI have shown better performance in terms of THD compared to the three level FCMI in all conditions of varied ma and mf. Based on the study also, five level FCMI shows a better voltage output waveform; close to a sinusoidal waveform compared to the three level FCMI.


In power electronics, Multilevel Inverter (MLI) plays very important role. It has spectacular applications in the field of high power & medium voltage energy control. The simulation of “Fifteen Level Cascaded H-Bridge Multilevel Inverter (MLI) Fed Induction Motor” is studied in this paper. The MLI’s are used to get high magnitude output voltage with reduced harmonic distortion. The reduction of harmonic distortion and the purity of the output waveform when compared with five level and nine level multilevel inverters is seen in this paper.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
R. K. Dhatrak ◽  
R. K. Nema ◽  
D. M. Deshpande

In today’s industrial world multilevel inverter (MLI) got a significant importance in medium voltage application and also a very potential topic for researchers. It is experienced that studying and comparing results of multilevel inverter (MLI) at distinct levels are a costlier and time consuming issue for any researcher if he fabricate different inverters for each level, as designing power modules simultaneously for different level is a cumbersome task. In this paper a flexible quotient has been proposed to recognize possible conversion of available MLI to few lower level inverters by appropriately changing microcontroller programming. This is an attempt to obtain such change in levels through simulation using MATLAB Simulink on inductive load which may also be applied to induction motor. Experimental results of pulse generation using dsPIC33EP256MC202 demonstrate the feasibility of proposed scheme. Proposed flexible quotient successfully demonstrates that a five-level inverter may be operated as three and two levels also. The paper focuses on odd levels only as common mode voltage (CMV) can be reduced to zero and performance of drives is better than even level. Simulated and experimental results are given in paper.


Sign in / Sign up

Export Citation Format

Share Document