scholarly journals Vendor Selection Methodology Based on Multi Criteria Decision Making

2010 ◽  
pp. 10-15
Author(s):  
Pratesh Jayaswal ◽  
M.K. Trivedi ◽  
Lalit Kumar

Many analytical models have been developed for addressing the Vender selection for companies. There are a list of vendor for selecting materials. It is very difficult to select a genuine vendor. Since the selection of a vendor is influenced by several parameters which are in linguistic. Form also, therefore to quantity the linguistic variables fuzzy logic and set theory is used. The fuzzy set theory helps in vagueness of the system a fuzzy decision approach is developed where are resourcing of vendors to select suitable vendor for materials is made.

1991 ◽  
Vol 56 (3) ◽  
pp. 505-559 ◽  
Author(s):  
Karel Eckschlager

In this review, analysis is treated as a process of gaining information on chemical composition, taking place in a stochastic system. A model of this system is outlined, and a survey of measures and methods of information theory is presented to an extent as useful for qualitative or identification, quantitative and trace analysis and multicomponent analysis. It is differentiated between information content of an analytical signal and information gain, or amount of information, obtained by the analysis, and their interrelation is demonstrated. Some notions of analytical chemistry are quantified from the information theory and system theory point of view; it is also demonstrated that the use of fuzzy set theory can be suitable. The review sums up the principal results of the series of 25 papers which have been published in this journal since 1971.


2014 ◽  
Vol 597 ◽  
pp. 472-475
Author(s):  
Yin Dong Zhang ◽  
Yang Liu

The decision method based on Fuzzy Synthetic Evaluation is presented to achieve skimmer selection in oil spill response. Firstly, the evaluation index system of skimmer is determined. Secondly, the fuzzy set theory is introduced to achieve quantification of skimmer qualitative indexes and the evaluation matrix of skimmer is established by expert investigation. Then the alternative skimmers are evaluated by the method of Fuzzy Synthetic Evaluation, and the optimal selection of skimmer can be obtained.


2005 ◽  
Vol 13 (1) ◽  
pp. 23-56 ◽  
Author(s):  
Badredine Arfi

In this article I use linguistic fuzzy-set theory to analyze the process of decision making in politics. I first introduce a number of relevant elements of (numerical and linguistic) fuzzy-set theory that are needed to understand the terminology as well as to grasp the scope and depth of the approach. I then explicate a linguistic fuzzy-set approach (LFSA) to the process of decision making under conditions in which the decision makers are required to simultaneously satisfy multiple criteria. The LFSA approach is illustrated through a running (hypothetical) example of a situation in which state leaders need to decide how to combine trust and power to make a choice on security alignment.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
M. Abbasi ◽  
R. Hosnavi ◽  
B. Tabrizi

Developing new products has received much attention within the last decades. This issue can be highlighted for strategic innovations, in particular. Recently, knowledge-based networks have been introduced in order to facilitate the affair of transforming knowledge into commercial products which can be regarded as a set of research centers, universities, knowledge intermediaries, customers, and so forth. However, there is a wide range of risk factors that are liable to affect the chain performance. Hence, this paper aims to consider the most influencing criteria that can play a more significant role in achievements of such networks. To do so, DEMATEL has been applied to take the relationships between the risk factors into account. Moreover, fuzzy set theory has been utilized in order to deal with the linguistic variables. Finally, the most important factors are identified and their relations are determined.


1990 ◽  
Vol 20 (1) ◽  
pp. 33-55 ◽  
Author(s):  
Jean Lemaire

AbstractFuzzy set theory is a recently developed field of mathematics, that introduces sets of objects whose boundaries are not sharply defined. Whereas in ordinary Boolean algebra an element is either contained or not contained in a given set, in fuzzy set theory the transition between membership and non-membership is gradual. The theory aims at modelizing situations described in vague or imprecise terms, or situations that are too complex or ill-defined to be analysed by conventional methods. This paper aims at presenting the basic concepts of the theory in an insurance framework. First the basic definitions of fuzzy logic are presented, and applied to provide a flexible definition of a “preferred policyholder” in life insurance. Next, fuzzy decision-making procedures are illustrated by a reinsurance application, and the theory of fuzzy numbers is extended to define fuzzy insurance premiums.


2017 ◽  
Vol Vol 159 (A1) ◽  
Author(s):  
D A Njumo

The main area of this work reflects a topic for which there is little or limited reference available and is carried out to meet the needs of professional and practical floating dry dock operators. The risk of hazards in floating dry docks is evaluated using a discrete fuzzy set theory (FST) and an evidential reasoning (ER) approach in a situation where historical failure data is not available. Fuzzy set modelling is used to estimate the safety levels of the causes of basic failure events in floating dry docks due to stability concerns using the concept of linguistic variables, and provides a framework for dealing with such variables in a systematic way. The ER approach is used to synthesise the estimated safety levels of the causes of hazards/basic hazard events. The results of this work will be valuable to dry dock masters and sister maritime engineering professionals.


Author(s):  
Malcolm J. Beynon

The inductive learning methodology known as decision trees, concerns the ability to classify objects based on their attributes values, using a tree like structure from which decision rules can be accrued. In this article, a description of decision trees is given, with the main emphasis on their operation in a fuzzy environment. A first reference to decision trees is made in Hunt et al. (1966), who proposed the Concept learning system to construct a decision tree that attempts to minimize the score of classifying chess endgames. The example problem concerning chess offers early evidence supporting the view that decision trees are closely associated with artificial intelligence (AI). It is over ten years later that Quinlan (1979) developed the early work on decision trees, to introduced the Interactive Dichotomizer 3 (ID3). The important feature with their development was the use of an entropy measure to aid the decision tree construction process (using again the chess game as the considered problem). It is ID3, and techniques like it, that defines the hierarchical structure commonly associated with decision trees, see for example the recent theoretical and application studies of Pal and Chakraborty (2001), Bhatt and Gopal (2005) and Armand et al. (2007). Moreover, starting from an identified root node, paths are constructed down to leaf nodes, where the attributes associated with the intermediate nodes are identified through the use of an entropy measure to preferentially gauge the classification certainty down that path. Each path down to a leaf node forms an ‘if .. then ..’ decision rule used to classify the objects. The introduction of fuzzy set theory in Zadeh (1965), offered a general methodology that allows notions of vagueness and imprecision to be considered. Moreover, Zadeh’s work allowed the possibility for previously defined techniques to be considered with a fuzzy environment. It was over ten years later that the area of decision trees benefited from this fuzzy environment opportunity (see Chang and Pavlidis, 1977). Since then there has been a steady stream of research studies that have developed or applied fuzzy decision trees (FDTs) (see recently for example Li et al., 2006 and Wang et al., 2007). The expectations that come with the utilisation of FDTs are succinctly stated by Li et al. (2006, p. 655); “Decision trees based on fuzzy set theory combines the advantages of good comprehensibility of decision trees and the ability of fuzzy representation to deal with inexact and uncertain information.” Chiang and Hsu (2002) highlight that decision trees has been successfully applied to problems in artificial intelligence, pattern recognition and statistics. They go onto outline a positive development the FDTs offer, namely that it is better placed to have an estimate of the degree that an object is associated with each class, often desirable in areas like medical diagnosis (see Quinlan (1987) for the alternative view with respect to crisp decision trees). The remains of this article look in more details at FDTs, including a tutorial example showing the rudiments of how an FDT can be constructed.


Sign in / Sign up

Export Citation Format

Share Document