scholarly journals Morphometric analysis of Nandakini River Basin, Garhwal Himalaya, Uttarakhand using geospatial technology

2021 ◽  
Vol 67 (3) ◽  
pp. 232-247
Author(s):  
Gopinath Patra ◽  
◽  
Sucheta Mukherjee ◽  
Vibhash Chandra Jha ◽  
◽  
...  

Basin morphometry is a crucial method of analysis to understand the geology, lithological structure, infiltration rate of rainwater, runoff, eroded load carrying capacity and flooding potential of a drainage basin. The quantitative techniques applied for linear, aerial and relief aspects of the drainage basin elucidate the rate of erosion, the intensity of denudation and subsequently the potential of the Nandakini river basin to flooding. The morphometric analysis of the Nandakini river basin in the Garwhal Himalayan region of Uttarakhand reveals that the Rf value of the Nandakini river basin is 0.28, indicating an elongated basin shape leading to quick flooding and poor draining out of floodwaters. Similarly, an elevation difference between the highest and lowest elevation is 5380 metres aids quick runoff and deposition of eroded debris in the drainage channels, another cause of channel overflow. The Rh value is high (0.12), indicating a high channel gradient with intense erosional processes operating due to steep gradient and this has a considerable impact on the rate of erosive geomorphic processes operating. The higher elevation on the Eastern part of the basin due to the Vaikrita Thrust, the Munsiyari Thrust (ie. the southern tilting Main Central Thrust) and the Baijnath Klippe has resulted in metamorphism in Miocene and Pliocene explaining the low rate of infiltration and rapid runoff.

2020 ◽  
Vol 61 (4) ◽  
pp. 25-35
Author(s):  
Thu Hoai Thi Trinh ◽  
Dao Thuy Thi Bui ◽  
Nghia Viet Nguyen ◽  
Huong Mai Dao ◽  

The Vu Gia - Thu Bon river basin is one of the largest basins in Vietnam. Research and assessment of this potential basin is a great interest to scientists and regulators. One of the important studies is the evaluation of morphological parameters of the basin. The morphological parameters represent water resources and at the same time are one of the factors that help researchers give a comprehensive view of the basin, assessing the factors related to the direction of the flow, the flow rate or hazards throughout the basin. Therefore, this paper is an attempt to evaluate the morphology of Vu Gia - Thu Bon river basin using DEM SRTM (30 m) data in GIS. This analysis can be achieved through the measurement of linear aspects, aerial aspects and relief aspects of the drainage basin. The results of the study show that stream order ranges from first to sixth order with a total stream length of 1024, a total length of 3183.2 km. Basin was divided into three subregions: upland, midland, and lowland. Those represent 66,9%, 26,0% and 7,1% percent of the region’s total area respectively.


2019 ◽  
Vol 12 (2) ◽  
pp. 1-25 ◽  
Author(s):  
Praveen Kumar Rai ◽  
Prafull Singh ◽  
Varun Narayan Mishra ◽  
Anisha Singh ◽  
Bhartendu Sajan ◽  
...  

Abstract An assessment of Varuna river basin of India was performed to study the various drainage parameters in GIS platform. The delineation of drainage network is possible either physically from topographic sheets or with the help data of Digital Elevation Model (DEM) by methods for calculation techniques. Extraction of the basin and sub-basins, stream network has been produced to evaluate the drainage characteristics in the study zone. The entire Varuna river basin has been subdivided into 3 sub-watersheds and 41 morphometric parameters have been computed under four broad categories i.e. drainage network, basin geometry, drainage texture, and relief characteristics. The morphometric analysis has been performed and different parameters have been correlated with each other to understand their underlying connection and their role over the basin hydro geomorphology. The study discloses different types of morphometric analysis and how they influence the soil and topography of the basin. The investigation and estimation of basin morphometry and relief parameters in GIS will be of massive utility in catchment area advancement, understanding the watershed for natural resource evaluation, planning and administration at any scale. The outcomes thus generated equip us with significant knowledge and may also provide an input that are essential in decision making for watershed planning and drainage development of the watershed.


1993 ◽  
Vol 28 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Richard E. Farrell ◽  
Jae E. Yang ◽  
P. Ming Huang ◽  
Wen K. Liaw

Abstract Porewater samples from the upper Qu’Appelle River basin in Saskatchewan, Canada, were analyzed to obtain metal, inorganic ligand and amino add profiles. These data were used to compute the aqueous speciation of the metals in each porewater using the computer program GEOCHEM-PC. The porewaters were classified as slightly to moderately saline. Metal concentrations reflected both the geology of the drainage basin and the impact of anthropogenic activities. Whereas K and Na were present almost entirely as the free aquo ions, carbonate equilibria dominated the speciation of Ca. Mg and Mn (the predominant metal ligand species were of the type MCO3 (s). MCO30. and MHCO3+). Trace metal concentrations were generally within the ranges reported for non-polluted freshwater systems. Whereas the speciation of the trace metals Cr(III) and Co(II) was dominated by carbonate equilibria, Hg(II)-, Zn(II)- and Fe(II)-speciation was dominated by hydroxy-metal complexes of the type M(OH)+ and M(OH)2°. The speciation of Fe(III) was dominated by Fe(OH)3 (s). In porewaters with high chloride concentrations (> 2 mM), however, significant amounts of Hg(II) were bound as HgCl20 and HgClOH0. The aqueous speciation of Al was dominated by Al(OH)4− and Al2Si2O4(OH)6 (s). Total concentrations of dissolved free amino acids varied from 15.21 to 25.17 umole L−1. The most important metal scavenging amino acids were histidine (due to high stability constants for the metal-histidine complexes) and tryptophan (due to its relatively high concentration in the porewaters. i.e., 5.96 to 7.73 umole L−1). Secondary concentrations of various trace metal-amino add complexes were computed for all the porewaters, but metal-amino acid complexes dominated the speciation of Cu(II) in all the porewaters and Ni(II) in two of the porewaters.


2021 ◽  
Vol 14 (6) ◽  
Author(s):  
Raj Kumar Bhattacharya ◽  
Nilanjana Das Chatterjee ◽  
Prasenjit Acharya ◽  
Kousik Das

2021 ◽  
Vol 58 (03) ◽  
pp. 286-299
Author(s):  
Mahesh Chand Singh ◽  
Rohit Singh ◽  
Abrar Yousuf ◽  
Vishnu Prasad

The present study examined 35 morphometric parameters related to stream/drainage network, catchment geometry, and relief aspects for hydrological characterization of the Thana Dam catchment using geospatial tools and techniques. The dam catchment was delineated using the high-resolution Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) Digital Elevation Model (DEM) data in ArcGIS 10.4.1 software using the Arc Hydro tools. The catchment is comprised of 4th order stream, obtained using a stream threshold value of 100 m length. The lower values of elongation ratio (0.61), circularity ratio (0.22), and form factor (0.29) indicated higher soil erosion potential, mainly due to their inverse relationship with land erodibility. Moreover, the higher values of stream frequency (15.7), drainage density (>5.0), drainage texture (7.48 km-1), and mean bifurcation ratio (4.08-6.33) indicated higher runoff potential, which would intensify the soil erosion, mainly due to their direct relationship with erodibility. Bifurcation ratio, elongation ratio, circulatory ratio, form factor, altogether indicated an elongated shape of the catchment with a fine drainage texture. The higher values of bifurcation ratio and texture ratio of the catchment also indicated severe overland flow (low infiltration rate) with a limited scope for groundwater recharge in the area, which in turn might significantly encourage the soil erosion. Overall, it was concluded that the catchment has a huge runoff potential resulting in high soil erosion due to its fine texture, impermeable subsurface material, steep slope, low infiltration rate, limited vegetation, longer duration of overland flow, and higher surface runoff. The morphometric analysis was found to be suitable for identifying catchment shape and the factors affecting hydrologic conditions and erodibility of the catchment. Thus, Geo-informatics based morphometric analysis of a reservoir catchment can be useful to study the erosion potential in relation to hydrologic (rainfall-runoff relationship) and other related land characteristics (e.g., relief, slope, infiltration rate, etc.).


2016 ◽  
Vol 9 (2) ◽  
pp. 12-27
Author(s):  
Mabel Geraldi Alejandra ◽  
Cintia Piccolo Mar iacute a ◽  
Miguel Eduardo Perillo Gerardo

Sign in / Sign up

Export Citation Format

Share Document