The Microclimatic Effect of Green Infrastructure (GI) in a Mediterranean City: the Case of the Urban Park of Ciutadella (Barcelona, Spain)

2019 ◽  
Vol 45 (3) ◽  
Author(s):  
María del Carmen Moreno-García

The use and promotion of green infrastructure (GI) is of great importance for improving urban climates and for helping cities to be more resilient and sustainable in the context of climate change. For this reason, the effect of urban parks on city climates is of great interest for research. In this study, temperature measurements were made during 14 nights in the winter and spring of 2015 in the largest park of the Mediterranean city of Barcelona, Spain: the Ciutadella Park. The analysis of the measurements made inside the park and in its adjacent urban environment has confirmed the existence of an urban cool island (UCI) with a maximum cooling intensity of 5.2°C (9.4°F) in winter, under anticyclonic situations preferably, and an average cooling intensity of 2.7°C (4.9°F). In the spring months, the urban cool island has an intensity under the average, with a maximum of 2.1°C (3.8°F).

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2616
Author(s):  
María Hernández-Hernández ◽  
Jorge Olcina ◽  
Álvaro-Francisco Morote

The effects of climate change on rainfall in the Mediterranean region are manifested in an overall decreasing trend, and greater irregularity in annual volumes and the city of Alicante is no exception. In addition, there has also been a spread of the urbanised area, which has led to an increase in the flood risk in urban areas (due to a greater runoff and the occupation of flood hazard areas) and drought events due to an increase in the water demand. In light of these new scenarios, the Mediterranean cities should design adaptation systems based on rainwater harvesting within the framework of a circular economy. This study analyses the integration of rainwater in flood and water demand management in the city of Alicante (Southern Spain). In recent years, this city has developed infrastructures in order to use these resources. To do this, different databases have been analysed (rainfall and volume of water collected in the green infrastructure systems). The results reveal that stormwater has become highly important in urban water management in Alicante as the city is now using a resource that previously went to waste and created problems (flooding and pollution). By way of conclusion, it is worth mentioning that the incorporation of rainwater for urban use in Alicante has reduced the pressure on traditional resources in satisfying water demand and has also acted as a measure for adapting to climate change.


2020 ◽  
Vol 8 (6) ◽  
pp. 1507-1511

Urban parks have always been considered as a pause from the urban environment. These parks have a high role in catering various comfort which serves as a place of relaxation for the users. Mostly these parks are designed in terms of visual aspects. People suffer the loss of opportunity in experiencing the sounds of these parks. Concerns pertaining to soundscape and its preferences in urban parks are yet to be explored much. In many context landscapes are designed and not soundscape.The emerging concept of soundscape need to be examined more. This paper brings the critical apprehension to understand the impact of selected landscape elements on the soundscape of urban parks. The study focus on understanding the significance of urban park soundscape, Role of tranquility in urban context, soundscape dimension in landscape, Influence of natural and manmade landscape features on soundscape perception and people’s perception on soundscape


Author(s):  
Oksana Sadkovskaya

One of major factors of deterioration in a microclimate of urban development in the conditions of the Rostov region, is degradation of landscapes owing to violation of water balance of the territory. In article the main reasons for violation of water balance which included natural features of the region, a consequence of anthropogenic influence, climatic changes, etc. are considered. Examples from the world practice of urban planning, which show the relevance and effectiveness of compensation for the effects of anthropogenic im-pacts and climate change using planning methods, are given. The experience of the United States, the Nether-lands, Canada and other countries that use water-saving technologies in planning is considered. The rela-tionship of urban planning and the formation of sustainable urban landscapes is shown. The integration of water-saving technologies into the urban environment can be a means of optimizing landscapes and a means of creating unique urban spaces. Reclamation of the urban landscape of low-rise buildings is a necessary step in creating a modern and comfortable urban environment in the conditions of the Rostov region. Meth-ods are proposed to compensate for negative changes in urban landscapes that can be applied at the stage of urban planning. As well as the proposed methods can be applied in the reconstruction of urban low-rise buildings. The considered methods concern not only urban landscapes, but also agricultural landscapes that surround small and medium-sized cities of the Rostov region. In article the author's concept of the organiza-tion of the low housing estate on a basis Urban- facies is submitted. Planning methods of regulation of water balance of the territory on the basis of models the ecological protective of landscapes are offered: an ecolog-ical core, an ecological corridor and an ecological barrier and also analogs from town-planning practice are considered. The reclamation of urban landscapes based on urban planning methods for regulating the water balance of the territory will allow creating unique urban spaces that are resistant to local climatic conditions and the possible consequences of climate change.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

The world’s mediterranean-type climate regions (including areas within the Mediterranean, South Africa, Australia, California, and Chile) have long been of interest to biologists by virtue of their extraordinary biodiversity and the appearance of evolutionary convergence between these disparate regions. Comparisons between mediterranean-type climate regions have provided important insights into questions at the cutting edge of ecological, ecophysiological and evolutionary research. These regions, dominated by evergreen shrubland communities, contain many rare and endemic species. Their mild climate makes them appealing places to live and visit and this has resulted in numerous threats to the species and communities that occupy them. Threats include a wide range of factors such as habitat loss due to development and agriculture, disturbance, invasive species, and climate change. As a result, they continue to attract far more attention than their limited geographic area might suggest. This book provides a concise but comprehensive introduction to mediterranean-type ecosystems. As with other books in the Biology of Habitats Series, the emphasis in this book is on the organisms that dominate these regions although their management, conservation, and restoration are also considered.


Author(s):  
Valeria Chávez ◽  
Debora Lithgow ◽  
Miguel Losada ◽  
Rodolfo Silva-Casarin

AbstractInfrastructure is necessary to protect and provide the goods and services required by humans. As coastal green infrastructure (CGI) aims to respect and work with natural processes, it is a feasible response to mitigate or avoid the consequences of coastal squeeze. The concept of CGI is receiving increased attention of late due to the challenges facing us, such as climate change, population growth and the overexploitation of natural resources on the coast. Terms which may be applied to encourage the construction of infrastructure, or to minimize the responsibility for poorly made decisions, often induce misunderstanding. In this paper, the concept of CGI and its use in solving coastal problems is reordered. Four categories are proposed, according to the degree of naturalness of the project: Nature reclamation, Engineered ecosystems, Ecologically enhanced engineering, and De-engineering/Relocation. Existing coastal risk evaluation frameworks can be used to design many types of CGI. Key concepts, challenges and good practices for the holistic management of coastal squeeze are presented from the analysis of successful and unsuccessful CGI projects worldwide.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Author(s):  
Mariya Bezgrebelna ◽  
Kwame McKenzie ◽  
Samantha Wells ◽  
Arun Ravindran ◽  
Michael Kral ◽  
...  

This systematic review of reviews was conducted to examine housing precarity and homelessness in relation to climate change and weather extremes internationally. In a thematic analysis of 15 reviews (5 systematic and 10 non-systematic), the following themes emerged: risk factors for homelessness/housing precarity, temperature extremes, health concerns, structural factors, natural disasters, and housing. First, an increased risk of homelessness has been found for people who are vulnerably housed and populations in lower socio-economic positions due to energy insecurity and climate change-induced natural hazards. Second, homeless/vulnerably-housed populations are disproportionately exposed to climatic events (temperature extremes and natural disasters). Third, the physical and mental health of homeless/vulnerably-housed populations is projected to be impacted by weather extremes and climate change. Fourth, while green infrastructure may have positive effects for homeless/vulnerably-housed populations, housing remains a major concern in urban environments. Finally, structural changes must be implemented. Recommendations for addressing the impact of climate change on homelessness and housing precarity were generated, including interventions focusing on homelessness/housing precarity and reducing the effects of weather extremes, improved housing and urban planning, and further research on homelessness/housing precarity and climate change. To further enhance the impact of these initiatives, we suggest employing the Human Rights-Based Approach (HRBA).


Sign in / Sign up

Export Citation Format

Share Document