scholarly journals The Effect of Application Endophytic Fungus Trichoderma spp. and Fusarium spp. to Control Bacterial Wilt in Chilli Pepper

2020 ◽  
Vol 17 (6) ◽  
pp. 559-569
Author(s):  
Ana Feronika Cindra IRAWATI ◽  
Kikin Hamzah MUTAQIN ◽  
Maggy Tenawidjaja SUHARTONO ◽  
Widodo WIDODO

Endophytic fungi have the ability to produce secondary metabolites that promote plant growth and increase plant resistance to biotic and abiotic stresses. A plant disease is an important biotic stress that need to be controlled. However, the potential use of endophytic fungi to induce resistance against bacterial wilt disease in chilli pepper (Capsicum annuum L.) caused by Ralstonia solanacearum has not been widely reported. Thus, this research aimed to determine the potential of endophytic fungi in suppressing development of bacterial wilt disease in chili. The study was conducted using three endophytic fungi such as Fusarium solani f.sp. phaseoli isolates AC-2.13 and AC-3.18, and Trichoderma asperellum AC-4.4. The test used nine treatments, i.e. 3 single treatments, four combination treatments, streptomycin, and control. The results showed that application of endophytic fungi F. solani f.sp. phaseoli and T. asperellum either in single or combination treatments reduced development of bacterial wilt in chili with inhibition rate of 12.5 to 50 %. Applications of combined endophytic fungi were not always inhibiting development of bacterial wilt in chili. Furthermore, the ability to suppress disease development by endophytic fungi was not always followed by its ability to increase crop yield. F. solani f.sp. phaseoli isolate AC-44 have the highest potential of endophytic fungi in controlling R. solanacearum. In the biochemical evaluation, F. solani f.sp. phaseoli showed an increase of several compounds activity in chili such as total phenol, peroxidase (PO), polyphenol oxidase (PPO), β-glucanase, and phenylalanine aminaliase (PAL).

Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 886
Author(s):  
Sujan Paudel ◽  
Shefali Dobhal ◽  
Anne M. Alvarez ◽  
Mohammad Arif

The bacterial wilt pathogen, first known as Bacillus solanacearum, has undergone numerous taxonomic changes since its first description in 1896. The history and significance of this pathogen is covered in this review with an emphasis on the advances in technology that were used to support each reclassification that finally led to the current separation of Ralstonia solanacearum into three genomic species. Frequent name changes occurred as methodology transitioned from phenotypic, biochemical, and molecular studies, to genomics and functional genomics. The diversity, wide host range, and geographical distribution of the bacterial wilt pathogen resulted in its division into three species as genomic analyses elucidated phylogenetic relationships among strains. Current advances in phylogenetics and functional genomics now open new avenues for research into epidemiology and control of the devastating bacterial wilt disease.


Author(s):  
Sadanand Kumbar ◽  
C Narayanankutty ◽  
P Sainamole Kurian ◽  
U Sreelatha ◽  
Satyaprakash Barik

Author(s):  
Sujan Paudel ◽  
Shefali Dobhal ◽  
Anne M. Alvarez ◽  
Mohammad Arif

The bacterial wilt pathogen, first known as Bacillus solanacearum, has undergone numerous taxonomic changes since its first description in 1896. The history and significance of this pathogen is covered in this review with an emphasis on the advances in technology that were used to support each reclassification that finally led to the current separation of Ralstonia solanacearum into three genomic species. Frequent name changes occurred as methodology transitioned from phenotypic, biochemical, and molecular studies, to genomics and functional genomics. The diversity, wide host range and geographical distribution of R. solanacearum has resulted in its inclusion in a “species complex” as genomic analyses of elucidated phylogenetic relationships among strains. Current advances in phylogenetics and functional genomics now open new avenues for research into the epidemiology and control of the devastating bacterial wilt disease.


2017 ◽  
Vol 18 (4) ◽  
pp. 1562-1567
Author(s):  
YULMIRA YANTI ◽  
TRIMURTI HABAZAR ◽  
REFLINALDON REFLINALDON ◽  
CHAINUR RAHMAN NASUTION ◽  
SRIMANO FELIA

Yanti Y, Habazar T, Reflinaldon, Nasution CR, Felia S. 2017. Indigenous Bacillus spp. ability to growth promoting activities and control bacterial wilt disease (Ralstonia solanacearum). Biodiversitas 18: 1562-1567. Among the species of Plant Growth Promoting Rhizobacteria, Bacillus spp. has been found to provide beneficial effects to different plant species. Based on our previous research from in planta screening’s method, we found six indigenous strains of Bacillus spp., which had the ability to control bacterial wilt and increased growth and yields of chili. Those were Bacillus subtilis BSn5,q Bacillus sp. RD-AZPVI-03, Bacillus sp. Y81-1, B.cereus strain C38/15, B.cereus strain APSB-03, and B. subtilis strain CIFT-MFB-4158A. This research aimed to characterize the mechanism of selected Bacillus spp. as biocontrol agents of R. solanacearum and as biofertilizer of chili in vitro. We have observed the biocontrol characters (production of HCN, siderophore, biosurfactant, protease, root colonization, and antibiotic), and biofertilizer’s characters (production of Indole Acetic Acid (IAA), ammonia and phosphate solubilization) of Bacillus spp. All strains had ability to produce variable concentrations of IAA, B.subtilis strain CIFT-MFB-4158A can produce siderophore, all isolates cannot produce HCN and biosurfactant, 4 isolates can produce protease. Based on the ability to colonize roots, B.subtilis strain CIFT-MFB-4158A had the best ability to colonize root surface (4.17 x 105 CFU/g root), while B. subtilis BSn5 had the best ability to colonize internal roots (2.08 x 105 CFU/g), and 2 Bacillus strains can suppress R. solanacearum in vitro.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Putri Wulan Cahyani ◽  
Noor Laili Aziza ◽  
Yusriadi Marsuni

Cultivation of tomato plants (Lycopesicum esculentum Mill.) Is often exposed to plant diseases. One of the diseases that often attacks tomato plants is bacterial wilt disease caused by R. solanacearum. Therefore, it is necessary to have biological control with the application of an antagonistic agent, namely the provision of endophytic fungi from dayak onion flowers. This study aims to determine the types of endophytic fungi in dayak onion flowers and to determine the potential of endophytic fungi in suppressing the growth of R. solanacearum. This research was conducted from February to May 2020, taking samples of dayak onion flowers in the Experimental Field of the Faculty of Agriculture and samples of symptomatic tomato plants on the Karang Anyar Farmer Group's land then continued with isolation, purification, identification, and antagonistic testing at the Production Laboratory of the Faculty of Agriculture, Lambung Mangkurat University, Banjarbaru. The method used in this study was a one-factor completely randomized design (CRD) with nine treatments, namely C1 = endophytic fungi A + R. solanacearum, C2 = endophytic fungi B + R. solanacearum, C3 = endophytic fungi F + R. solanacearum, C4 = endophytic fungi G + R. solanacearum, C5 = endophytic fungi I + R. solanacearum, C6 = endophytic fungi J + R. solanacearum, C7 = endophytic fungi K + R. solanacearum, C8 = fungi endophytic N + R. solanacearum, and C9 = endophytic fungi P + R. solanacearum and repeated three times. This study used a comparison, namely control with three replications, in order to obtain 30 experimental units. The results of this study that endophytic fungi from dayak onion flowers have the potential to suppress the growth of R. solanacearum. Based on the research, there were 17 endophytic fungi from dayak onion flowers with nine endophytic fungi which had the fastest growth rate of radius. Fungi with the genus Colletotrichum sp., Mucor sp., and Papulaspora sp. has the potential to suppress the growth of R. solanacearum with moderate to strong percentage of inhibition.


2021 ◽  
Vol 13 (3) ◽  
pp. 1491
Author(s):  
Yancui Guo ◽  
Zhenyu Fan ◽  
Xiong Yi ◽  
Yuhong Zhang ◽  
Raja Asad Ali Khan ◽  
...  

The efficacy of traditional control measures for the management of plant pathogens is decreasing, and the resistance of these pathogens to pesticides is increasing, which poses a serious threat to global food security. The exploration of novel and efficient management measures to combat plant disease is an urgent need at this time. In this study, fungal metabolites from three Trichoderma spp. (T. harzianum, T. virens and T. koningii) were prepared on three different growth media (STP, MOF and supermalt (SuM)). The fungal metabolites were tested in vitro and in vivo from March–April 2020 under greenhouse conditions in a pot experiment utilizing completely randomized design to test their management of the bacterial wilt disease caused by R. solanacearum in tomato plants. The effect of the fungal metabolites on bacterial cell morphology was also investigated through scanning electron microscopy (SEM) analysis. In vitro investigation showed that the fungal metabolites of T. harzianum obtained on the STP medium were the most effective in inhibiting in vitro bacterial growth and produced a 17.6 mm growth inhibition zone. SEM analysis confirms the rupture of the cell walls and cell membranes of the bacterium, along with the leakage of its cell contents. Generally, fungal metabolites obtained on an STP medium showed higher activity than those obtained on the other two media, and these metabolites were then evaluated in vivo according to three application times (0 days before transplantation (DBT), 4 DBT and 8 DBT) in a greenhouse trial to examine their ability to manage R. solanacearum in tomato plants. Consistent with in vitro results, the results from the greenhouse studies showed a level of higher anti-bacterial activity of T. harzianum metabolites than they did for the metabolites of other fungi, while among the three application times, the longest time (8 DBT) was more effective in controlling bacterial wilt disease in tomato plants. Metabolites of T. harzianum applied at 8 DBT caused the maximum decrease in soil bacterial population (1.526 log cfu/g), resulting in the lowest level of disease severity (area under disease progressive curve (AUDPC) value: 400), and maximum plant freshness (with a resulting biomass of 36.7 g, a root length of 18.3 cm and a plant height of 33.0 cm). It can be concluded that T. harzianum metabolites obtained on an STP medium, when applied after 8 DBT, can suppress soil bacterial population and enhance plant growth, and thus can be used as a safe, environmentally-conscious and consumer-friendly approach to managing bacterial wilt disease in tomato plants and possibly other crops.


2019 ◽  
Vol 18 (2) ◽  
pp. 177
Author(s):  
Yulmira Yanti ◽  
Hasmiandy Hamid ◽  
Reflin Reflin

Indigenous rhizobacteria screening from tomato to control Ralstonia syzigii subsp. indonesiensis and promote plant growth rate and yield. Bacterial wilt is the most damaging vascular pathogen on tomato and many other crops in tropical, subtropical and warm temperate areas of the world which limits the production. Rhizobacteria have been concerned as potential biological control agents due to their ability to promote plant growth and health, and their role as antagonists of plant pathogens. The purpose of this research was to screen the best indigenous rhizobacteria (IRB) that able to control bacterial wilt disease and increase growth rate and yield of tomato plant. This research was conducted in 3 stages: (1) Isolation and selection of indigenous rhizobacteria as PGPR on tomato seedlings, consisted of 27 IRB isolates and a control, with triplications; (2) Selection of IRB isolates that control R. syzigii subsp. indonesiensis on tomato plants, which consisted of 8 treatments including 7 IRB and a control with 5 replications; (3) Characterization of IRB isolates ability to promote plant growth (indicated with IAA production & phosphate solubilizing). The variables observed were disease development, growth enhancement and IRB isolate ability to produce IAA and solubilize phosphate. The results showed that all IRB isolates were able to control bacterial wilt disease and increase the growth rate and yield of tomato. IR2.3.5, IR1.3.4 and IR1.4.2 were the best isolates in controlling R. syzigii subsp. indonesiensis and increasing the growth rate and yield by 81.25% and 68.72% respectively. All isolates showed various abilities to produce IAA, however, only isolates IR2.3.5 and IR1.3.4 that had abilities to solubilize phosphate.


2016 ◽  
Vol 12 (4) ◽  
pp. 133
Author(s):  
Ana Feronika Cindra Irawati ◽  
Yudi Sastro ◽  
Sulastri Sulastri ◽  
Maggy Tenawidjaja Suhartono ◽  
Kikin Hamzah Mutaqin ◽  
...  

Ralstonia solanacearum has been known to cause bacterial wilt disease on chili pepper.  Despite many reports on the potential use of endophytic fungi to induce plant resistance, its utilization to suppress bacterial wilt disease of chili has not been widely reported.  The aims of this research was to screen potential endophytic fungi that may increase chili resistance against bacterial wilt disease.  Selection of endophytic fungi was done using in vivo and antibiosis test. Strains of fungi were considered the most potent in suppressing the development of bacterial wilt in chilli were identified. Ten out of 62 isolates of endophytic fungi gave the highest suppression on chilli’s bacterial wilt disease.  Most strains of endophytic fungi were able to suppress the development of bacterial wilt disease, but not always positively correlated to the vegetative and generative growth of chilli. Based on the level of disease intensity and the growth of plants were obtained three strains of endophytic fungi that considered potentially suppress the incidence of bacterial wilt disease.  The three isolates was identified as Fusarium solani f.sp. phaseoli (AC-2.13 and AC-4.4) and Trichoderma asperellum (AC-3.18) using morphology and molecular characters. Although all three selected isolates were able to suppress bacterial wilt disease in this study, but application of F. solani f.sp. phaseoli should be considered in practical use since it is generally known as the causal agent of root rot disease of beans


2021 ◽  
pp. 126751
Author(s):  
Bhaskar Dowarah ◽  
Heena Agarwal ◽  
Debasish B Krishnatreya ◽  
Pankaj Losan Sharma ◽  
Nilamjyoti Kalita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document