scholarly journals Cendawan Endofit yang Potensial Meningkatkan Ketahanan Cabai Merah terhadap Penyakit Layu Bakteri

2016 ◽  
Vol 12 (4) ◽  
pp. 133
Author(s):  
Ana Feronika Cindra Irawati ◽  
Yudi Sastro ◽  
Sulastri Sulastri ◽  
Maggy Tenawidjaja Suhartono ◽  
Kikin Hamzah Mutaqin ◽  
...  

Ralstonia solanacearum has been known to cause bacterial wilt disease on chili pepper.  Despite many reports on the potential use of endophytic fungi to induce plant resistance, its utilization to suppress bacterial wilt disease of chili has not been widely reported.  The aims of this research was to screen potential endophytic fungi that may increase chili resistance against bacterial wilt disease.  Selection of endophytic fungi was done using in vivo and antibiosis test. Strains of fungi were considered the most potent in suppressing the development of bacterial wilt in chilli were identified. Ten out of 62 isolates of endophytic fungi gave the highest suppression on chilli’s bacterial wilt disease.  Most strains of endophytic fungi were able to suppress the development of bacterial wilt disease, but not always positively correlated to the vegetative and generative growth of chilli. Based on the level of disease intensity and the growth of plants were obtained three strains of endophytic fungi that considered potentially suppress the incidence of bacterial wilt disease.  The three isolates was identified as Fusarium solani f.sp. phaseoli (AC-2.13 and AC-4.4) and Trichoderma asperellum (AC-3.18) using morphology and molecular characters. Although all three selected isolates were able to suppress bacterial wilt disease in this study, but application of F. solani f.sp. phaseoli should be considered in practical use since it is generally known as the causal agent of root rot disease of beans

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Putri Wulan Cahyani ◽  
Noor Laili Aziza ◽  
Yusriadi Marsuni

Cultivation of tomato plants (Lycopesicum esculentum Mill.) Is often exposed to plant diseases. One of the diseases that often attacks tomato plants is bacterial wilt disease caused by R. solanacearum. Therefore, it is necessary to have biological control with the application of an antagonistic agent, namely the provision of endophytic fungi from dayak onion flowers. This study aims to determine the types of endophytic fungi in dayak onion flowers and to determine the potential of endophytic fungi in suppressing the growth of R. solanacearum. This research was conducted from February to May 2020, taking samples of dayak onion flowers in the Experimental Field of the Faculty of Agriculture and samples of symptomatic tomato plants on the Karang Anyar Farmer Group's land then continued with isolation, purification, identification, and antagonistic testing at the Production Laboratory of the Faculty of Agriculture, Lambung Mangkurat University, Banjarbaru. The method used in this study was a one-factor completely randomized design (CRD) with nine treatments, namely C1 = endophytic fungi A + R. solanacearum, C2 = endophytic fungi B + R. solanacearum, C3 = endophytic fungi F + R. solanacearum, C4 = endophytic fungi G + R. solanacearum, C5 = endophytic fungi I + R. solanacearum, C6 = endophytic fungi J + R. solanacearum, C7 = endophytic fungi K + R. solanacearum, C8 = fungi endophytic N + R. solanacearum, and C9 = endophytic fungi P + R. solanacearum and repeated three times. This study used a comparison, namely control with three replications, in order to obtain 30 experimental units. The results of this study that endophytic fungi from dayak onion flowers have the potential to suppress the growth of R. solanacearum. Based on the research, there were 17 endophytic fungi from dayak onion flowers with nine endophytic fungi which had the fastest growth rate of radius. Fungi with the genus Colletotrichum sp., Mucor sp., and Papulaspora sp. has the potential to suppress the growth of R. solanacearum with moderate to strong percentage of inhibition.


2020 ◽  
Vol 17 (6) ◽  
pp. 559-569
Author(s):  
Ana Feronika Cindra IRAWATI ◽  
Kikin Hamzah MUTAQIN ◽  
Maggy Tenawidjaja SUHARTONO ◽  
Widodo WIDODO

Endophytic fungi have the ability to produce secondary metabolites that promote plant growth and increase plant resistance to biotic and abiotic stresses. A plant disease is an important biotic stress that need to be controlled. However, the potential use of endophytic fungi to induce resistance against bacterial wilt disease in chilli pepper (Capsicum annuum L.) caused by Ralstonia solanacearum has not been widely reported. Thus, this research aimed to determine the potential of endophytic fungi in suppressing development of bacterial wilt disease in chili. The study was conducted using three endophytic fungi such as Fusarium solani f.sp. phaseoli isolates AC-2.13 and AC-3.18, and Trichoderma asperellum AC-4.4. The test used nine treatments, i.e. 3 single treatments, four combination treatments, streptomycin, and control. The results showed that application of endophytic fungi F. solani f.sp. phaseoli and T. asperellum either in single or combination treatments reduced development of bacterial wilt in chili with inhibition rate of 12.5 to 50 %. Applications of combined endophytic fungi were not always inhibiting development of bacterial wilt in chili. Furthermore, the ability to suppress disease development by endophytic fungi was not always followed by its ability to increase crop yield. F. solani f.sp. phaseoli isolate AC-44 have the highest potential of endophytic fungi in controlling R. solanacearum. In the biochemical evaluation, F. solani f.sp. phaseoli showed an increase of several compounds activity in chili such as total phenol, peroxidase (PO), polyphenol oxidase (PPO), β-glucanase, and phenylalanine aminaliase (PAL).


2016 ◽  
Vol 21 (3) ◽  
pp. 131
Author(s):  
S. Y. HARTATI ◽  
E. HADIPOENTYANTI ◽  
AMALIA AMALIA ◽  
NURSALAM NURSALAM

<p>ABSTRAK</p><p>Layu   bakteri  yang   disebabkan   oleh <em>  Ralstonia   solanacearum <br /> </em>merupakan salah satu penyakit penting pada tanaman nilam. Perakitan <br /> varietas nilam tahan terhadap penyakit tersebut yang dilakukan melalui <br /> induksi keragaman somaklonal telah menghasilkan beberapa somaklon <br /> yang tahan terhadap <em>R. solanacearum</em> secara <em>in-vitro</em>. Tujuan penelitian <br /> adalah menguji tingkat ketahanan somaklon tersebut terhadap penyakit <br /> layu  pada  kondisi  rumah  kaca (<em>in-vivo</em>).  Penelitian  disusun  dalam <br /> Rancangan  Acak  Lengkap  dengan 27  perlakuan, 3  ulangan,  dan 10 <br /> tanaman/ulangan. Sebagian akar dari somaklon nilam dilukai (dipotong), <br /> selanjutnya diinokulasi (disiram) dengan suspensi<em> R. solanacearum</em> dengan <br /> berbagai konsentrasi 10<sup>5</sup>, 10<sup>7</sup>, dan 10<sup>9 </sup><em>cfu</em>/ml, sebanyak 50 ml/tanaman. <br /> Hasil penelitian menunjukkan, bahwa somaklon yang diinokulasi dengan <br /> konsentrasi 10<sup>5 </sup><em>cfu</em>/ml, 50  ml/tanaman  semuanya  tidak  menunjukkan <br /> gejala layu. Somaklon yang diinokulasi dengan konsentrasi 107 dan 10<sup>9</sup></p><p><em>cfu</em>/ml,  50 ml/tanaman, sebagian layu dan mati.  Dari somaklon yang</p><p>7</p><p>diinokulasi dengan konsentrasi 10     <em>cfu</em>/ml, 50 ml/tanaman, 8 di antaranya</p><p>menunjukkan respon sangat tahan, 4 tahan, dan 5 agak tahan. Ke 17 <br /> somaklon tersebut mempunyai intensitas penyakit &lt;50% dan semua lebih <br /> tahan dari pada varietas Sidikalang (agak toleran). Dari 17 somaklon yang <br /> diinokulasi dengan konsentrasi 10<sup>9 </sup><em>cfu</em>/ml, 50 ml/tanaman, 2 di antaranya <br /> sangat tahan dan 7 somaklon tahan. Teknik skrining ini dapat digunakan <br /> sebagai  metode  standar  untuk pengujian  ketahanan  nilam  terhadap <br /> penyakit layu.</p><p>Kata kunci:  Skrining  ketahanan,  somaklon,  nilam,  penyakit  layu,<em>  R. solanacearum.</em></p><p><em> </em></p><p><em></em>ABSTRACT</p><p>Resistance-Screening of Patchouli Somaclones on Bacterial Wilt Disease (Ralstonia solanacearum) </p><p>Bacterial wilt caused by <em>Ralstonia solanacearum </em>is one of the most <br /> important  diseases  on patchouli.  The  developing patchouli resistance <br /> varieties against  wilt  disease  conducted  through the  induction  of <br /> somaclonal variation produced resistant patchouli somaclones against <em>R. <br /> </em><em>solanacearum </em>(in-vitro). The aim of this  research was to screen the <br /> resistance of those patchouli somaclones against wilt disease under a glass <br /> house condition (in-vivo). The research was conducted in a Randomized <br /> Completely Design  with 27 treatments, 3  replicates,  and 10  plants/ <br /> replicate. Some roots of the patchouli somaclones were wounded (cut), <br /> then inoculated (drenched)   with <em>  R.   solanacearum</em>  suspension   in <br /> concentration of 10<sup>5</sup>, 10<sup>7</sup>, and 10<sup>9 </sup><em>cfu</em>/ml; 50 ml/plant. The result showed, <br /> that all the patchouli somaclones inoculated with <em>R. solanacearum</em> 10<sup>5 <br /> </sup>cfu/ml, 50 ml/plant were not show any wilt sympthom. Whereas, some <br /> somaclones inoculated with the higher concentration 10<sup>7 </sup>and 109 cfu/ml, 50 ml/plant were wilted and died. Among the somaclones inoculated with  the concentration of 10<sup>7</sup>  cfu/ml, 50 ml/plant, 8 of them were highly  resistant, 4 were resistant, and 5 were moderately resistant. The disease  intencity of those 17 somaclones were &lt;50% and they were more resistant than  the  Sidikalang  variety  (moderately  tolerant).  Among  those  17 <br /> somaclones inoculated with the concentration of 10<sup>9 </sup>cfu/ml, 50 ml/plant, 2 <br /> of them were highly resistant and 7 were resistant. This screening method <br /> could be used as a standard protocol for patchouli resistance screening <br /> against wilt disease.</p><p>Kata kunci: Screening resistance, somaclone, patchouli, wilt disease, <em>R. solanacearum.</em></p>


2021 ◽  
Vol 13 (3) ◽  
pp. 1491
Author(s):  
Yancui Guo ◽  
Zhenyu Fan ◽  
Xiong Yi ◽  
Yuhong Zhang ◽  
Raja Asad Ali Khan ◽  
...  

The efficacy of traditional control measures for the management of plant pathogens is decreasing, and the resistance of these pathogens to pesticides is increasing, which poses a serious threat to global food security. The exploration of novel and efficient management measures to combat plant disease is an urgent need at this time. In this study, fungal metabolites from three Trichoderma spp. (T. harzianum, T. virens and T. koningii) were prepared on three different growth media (STP, MOF and supermalt (SuM)). The fungal metabolites were tested in vitro and in vivo from March–April 2020 under greenhouse conditions in a pot experiment utilizing completely randomized design to test their management of the bacterial wilt disease caused by R. solanacearum in tomato plants. The effect of the fungal metabolites on bacterial cell morphology was also investigated through scanning electron microscopy (SEM) analysis. In vitro investigation showed that the fungal metabolites of T. harzianum obtained on the STP medium were the most effective in inhibiting in vitro bacterial growth and produced a 17.6 mm growth inhibition zone. SEM analysis confirms the rupture of the cell walls and cell membranes of the bacterium, along with the leakage of its cell contents. Generally, fungal metabolites obtained on an STP medium showed higher activity than those obtained on the other two media, and these metabolites were then evaluated in vivo according to three application times (0 days before transplantation (DBT), 4 DBT and 8 DBT) in a greenhouse trial to examine their ability to manage R. solanacearum in tomato plants. Consistent with in vitro results, the results from the greenhouse studies showed a level of higher anti-bacterial activity of T. harzianum metabolites than they did for the metabolites of other fungi, while among the three application times, the longest time (8 DBT) was more effective in controlling bacterial wilt disease in tomato plants. Metabolites of T. harzianum applied at 8 DBT caused the maximum decrease in soil bacterial population (1.526 log cfu/g), resulting in the lowest level of disease severity (area under disease progressive curve (AUDPC) value: 400), and maximum plant freshness (with a resulting biomass of 36.7 g, a root length of 18.3 cm and a plant height of 33.0 cm). It can be concluded that T. harzianum metabolites obtained on an STP medium, when applied after 8 DBT, can suppress soil bacterial population and enhance plant growth, and thus can be used as a safe, environmentally-conscious and consumer-friendly approach to managing bacterial wilt disease in tomato plants and possibly other crops.


2019 ◽  
Vol 18 (2) ◽  
pp. 177
Author(s):  
Yulmira Yanti ◽  
Hasmiandy Hamid ◽  
Reflin Reflin

Indigenous rhizobacteria screening from tomato to control Ralstonia syzigii subsp. indonesiensis and promote plant growth rate and yield. Bacterial wilt is the most damaging vascular pathogen on tomato and many other crops in tropical, subtropical and warm temperate areas of the world which limits the production. Rhizobacteria have been concerned as potential biological control agents due to their ability to promote plant growth and health, and their role as antagonists of plant pathogens. The purpose of this research was to screen the best indigenous rhizobacteria (IRB) that able to control bacterial wilt disease and increase growth rate and yield of tomato plant. This research was conducted in 3 stages: (1) Isolation and selection of indigenous rhizobacteria as PGPR on tomato seedlings, consisted of 27 IRB isolates and a control, with triplications; (2) Selection of IRB isolates that control R. syzigii subsp. indonesiensis on tomato plants, which consisted of 8 treatments including 7 IRB and a control with 5 replications; (3) Characterization of IRB isolates ability to promote plant growth (indicated with IAA production & phosphate solubilizing). The variables observed were disease development, growth enhancement and IRB isolate ability to produce IAA and solubilize phosphate. The results showed that all IRB isolates were able to control bacterial wilt disease and increase the growth rate and yield of tomato. IR2.3.5, IR1.3.4 and IR1.4.2 were the best isolates in controlling R. syzigii subsp. indonesiensis and increasing the growth rate and yield by 81.25% and 68.72% respectively. All isolates showed various abilities to produce IAA, however, only isolates IR2.3.5 and IR1.3.4 that had abilities to solubilize phosphate.


2021 ◽  
Vol 7 (3) ◽  
pp. 195
Author(s):  
Amr H. Hashem ◽  
Amer M. Abdelaziz ◽  
Ahmed A. Askar ◽  
Hossam M. Fouda ◽  
Ahmed M. A. Khalil ◽  
...  

Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops, including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs) have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore, Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and 1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani damping-off and minimize the severity of root rot disease. The most effective treatment method is found when soaking and spraying were used with each other followed by spraying and then soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases in Vicia faba as well as plant growth inducer.


2021 ◽  
pp. 126751
Author(s):  
Bhaskar Dowarah ◽  
Heena Agarwal ◽  
Debasish B Krishnatreya ◽  
Pankaj Losan Sharma ◽  
Nilamjyoti Kalita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document