scholarly journals Optical Properties of Copper-Zinc Sulphide Network from Mixed Single Solid Source Precursors of Copper and Zinc Dithiocarbamates

Author(s):  
Joseph Onyeka EMEGHA ◽  
Chukwudi Mcdonald OKAFOR ◽  
Kingsley Eghonghon UKHUREBOR

Thin films of copper-zinc sulphide (CxZn1-xS) have been deposited by metal-organic chemical vapour deposition (MOCVD) technique at 400 °C on soda-lime substrates. The films contained copper dithiocarbamate and zinc dithiocarbamate of various concentrations. The effect of the precursor’s concentration was investigated using Fourier transforms infrared (FTIR) spectroscopy and UV-Vis Spectrophotometer. The precursors’ FTIR spectrums have the characteristics of copper sulphide and zinc sulphide absorption bands below 800 cm-1. The optical properties for all the samples were studied by reading the absorbance and transmittance spectra in the range of 300 - 900 nm. The results indicate direct bandgap energy that ranged between 2.20 to 3.42 eV. The films were found to have a very high transmittance in the visible and near-infrared regions and an average reflectance of about 0.14 in the same regions. Optical constants like refractive index, extinction coefficient, and optical conductivity were estimated as a function of photon energy. The various properties exhibited by the films indicate that the films can find application in various optoelectronic devices.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joseph Onyeka Emegha ◽  
Bolutife Olofinjana ◽  
Kingsley Eghonghon Ukhurebor ◽  
Joseph Taye Adegbite ◽  
Marcus Adebola Eleruja

The electrical properties of metal-organic-chemical-vapour-deposited copper zinc sulphide (Cu-Zn-S) thin films on soda-lime substrates were studied. The films produced were characterized in terms of their electrical properties employing the Four-point probe procedure at a temperature range of 370 to 470°C. The electrical properties (resistivity and conductivity) of the deposited copper zinc sulphide films were systematically studied in terms of the deposition parameters of concentration and deposition temperature. The conductivity was in the interval of 5.48 to 8.0 × 10-1 (Ω.cm)-1. Activation energies of 0.54 and 0.29 eV in the deposition temperature range were estimated. The high resistive property of the films re-emphasized the potential use of these materials as active semiconductors for optoelectronic device applications.


2019 ◽  
Vol 4 (1) ◽  
pp. 11-22
Author(s):  
Joseph Onyeka EMEGHA ◽  
◽  
John DAMISA ◽  
Frank Ochuko-oghene EFE ◽  
Bolutife OLOFINJANA ◽  
...  

2007 ◽  
Vol 22 (9) ◽  
pp. 2531-2538 ◽  
Author(s):  
Mei Chee Tan ◽  
Jackie Y. Ying ◽  
Gan Moog Chow

Near infrared (NIR) absorbing nanoparticles synthesized by the reduction of HAuCl4 with Na2S exhibited absorption bands at ∼530 nm, and in the NIR region of 650–1100 nm. The NIR optical properties were not found to be related to the earlier proposed Au2S–Au core-shell microstructure in previous studies. From a detailed study of the structure and microstructure of as-synthesized particles in this work, S-containing, Au-rich, multiply-twinned nanoparticles were found to exhibit NIR absorption. They consisted of amorphous AuxS (where x = 2), mostly well mixed within crystalline Au, with a small degree of surface segregation of S. Therefore, NIR absorption was likely due to interfacial effects on particle polarization from the introduction of AuxS into Au particles, and not the dielectric confinement of plasmons associated with a core-shell microstructure.


2008 ◽  
Vol 23 (1) ◽  
pp. 281-293 ◽  
Author(s):  
Mei Chee Tan ◽  
Jackie Y. Ying ◽  
Gan Moog Chow

Near-infrared (NIR)-absorbing nanoparticles synthesized by the reduction of tetrachloroauric acid (HAuCl4) using sodium sulfide (Na2S) exhibited absorption bands at ∼530 nm and at the NIR region of 650−1100 nm. A detailed study on the structure and microstructure of as-synthesized nanoparticles was reported previously. The as-synthesized nanoparticles were found to consist of amorphous AuxS (x = ∼2), mostly well mixed within crystalline Au. In this work, the optical properties were tailored by varying the precursor molar ratios of HAuCl4 and Na2S. In addition, a detailed study of composition and particle-size effects on the optical properties was discussed. The change of polarizability by the introduction of S in the form of AuxS (x = ∼2) had a significant effect on NIR absorption. Also, it was found in this work that exposure of these particles to NIR irradiation using a Nd:YAG laser resulted in loss of the NIR absorption band. Thermal effects generated during NIR irradiation had led to microstructural changes that modified the optical properties of particles.


2019 ◽  
Vol 61 (6) ◽  
pp. 1204
Author(s):  
Г.И. Миронов

AbstractThe electronic and optical properties of gold fullerenes are studied in the framework of the Hubbard model. The expressions of the Fourier transforms of anticommutator Green functions have been obtained for gold fullerenes Au_16 and Au_20, the poles of which determine the energy spectrum of the system under consideration. The calculations are performed for the thermodynamic means that characterize jumps of electrons from a nanosystem site to a neighboring site, the correlation functions demonstrating the possibility of existing two d electrons with oppositely oriented spin projections on the same site of the fullerenes consisting of gold atoms. The optical absorption spectra are presented. The optical absorption peaks of ions $${\text{Au}}_{{20}}^{ - }$$ and $${\text{Au}}_{{16}}^{ - }$$ correspond to a near-infrared spectral region, where the light absorption by blood or a soft tissue is vanishingly small; thus, these ions can be used as a new class of contrast improvements and phototherapeutic means for diagnostics and treatment of cancer.


2021 ◽  
Vol 18 (20) ◽  
pp. 16
Author(s):  
John Damisa ◽  
Joseph Onyeka Emegha

The effects of deposition cycles on the structural and optical properties of lead tin sulphide (PbSnS) thin films have been described. Successive ionic layer adsorption and reaction (SILAR) method was used to deposit the ternary material on soda-lime substrates. In the present work, the PbSnS films were grown using lead nitrate, tin chloride dehydrate and thioacetamide solutions as sources of Pb, Sn and S, respectively. XRD measurements revealed that the deposited films were polycrystalline in nature with strong adherent to the substrates. The transmittance was found to be high in the near infrared regions of the electromagnetic radiation and, also increased with deposition cycles. The band gap energy was found to vary from 1.70 to 1.75 eV for 10 and 35 deposition cycles. The study indicates that SILAR is an excellent method in depositing good quality films for device applications. HIGHLIGHTS SILAR is an excellent technique for depositing thin films of lead tin sulphide (PbSnS) Deposition cycles influences the XRD and optical properties of PbSnS thin films PbSnS thin films are useful for solar cell fabrications The band gaps of the PbSnS varies from 1.70 to 1.75 eV with deposition cycles


2020 ◽  
Author(s):  
Tomas Kohout ◽  
Evgeniya Petrova ◽  
Grigoriy Yakovlev ◽  
Victor Grokhovsky ◽  
Antti Penttilä ◽  
...  

<p><strong>Introduction</strong></p><p>Shock-induced changes in planetary materials related to impacts or planetary collisions are known to be capable of altering their optical properties. One such example is observed in ordinary chondrite meteorites. The highly shocked silicate-rich ordinary chondrite material is optically darkened and its typical S-complex-like asteroid spectrum is altered toward a darker, featureless spectrum resembling the C/X complex asteroids. Thus, one can hypothesize that a significant portion of the ordinary chondrite material may be hidden within the observed C/X asteroid population.</p><p>The exact pressure-temperature conditions of the shock-induced darkening are, however, not well constrained and due to this gap in knowledge, it is not possible to correctly assess the significance of the shock darkening within the asteroid population. In order to address this shortcoming, we experimentally investigate the gradual changes in the chondrite material optical properties together with the associated mineral and textural features as a function of the shock pressure. For this purpose, we use a Chelyabinsk meteorite (LL5 chondrite), which is subjected to a spherical shock experiment. The spherical shock experiment geometry allows for a gradual increase in the shock pressure within a single spherically shaped sample from 15 GPa at its rim toward hundreds of gigapascals in the center.</p><p><strong>Results</strong></p><p>Four distinct zones were observed with an increasing shock load (Fig. 1). We number the zones in the direction of increasing shock from the outside toward the center as zones I–IV The optical changes in zone I are minimal up to ~50 GPa. In the region of ~50–60 GPa corresponding to zone II, shock darkening occurs due to the troilite melt infusion into silicates. This process abruptly ceases at pressures of ~60 GPa in zone III due to an onset of silicate melting and immiscibility of troilite and silicate melts. Silicate melt coats residual silicate grains and prevents troilite from further penetration into cracks. At pressures higher than ~150 GPa (zone IV), complete recrystallization occurs and is associated with a second-stage shock darkening due to fine troilite-metal eutectic grains.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.369960f7c0fe58218382951/sdaolpUECMynit/0202CSPE&app=m&a=0&c=65ce9691abaaf54f5e7768045027f7ea&ct=x&pn=gnp.elif" alt="" width="777" height="639"></p><p>The order of the spectral curves in the UV-VIS-NIR (ultraviolet – visible – near-infrared) region follows the visual brightness in which zone I is the brightest, followed by zones III and II, and zone IV is the darkest one (Fig. 2). The MIR reflectance (Fig. 3) follows the same albedo order as UV-VIS-NIR up to the primary Christiansen feature at 8.7 µm. At higher wavelengths in the Si-O reststrahlen bands region, the reflectance order changes with zones II and III, which are brighter than zones I and IV. The comparison of the powdered sample spectra to the one obtained from the rough saw-cut surface reveals the following trends. The overall reflectance of the powdered sample is an order of magnitude lower compared to the rough surface one. The reststrahlen bands in both samples show similar positions at approximately 9.1, 9.5–9.6, 10.3, 10.8, 11.3, and 11.8–12 µm. They are dominated by olivine with possible presence of orthopyroxene. The amplitudes of the reststrahlen bands are higher in the rough surface sample. The transparency feature at 12.7 µm is only observed in the powdered sample. The primary Christiansen feature at 8.7 µm is more pronounced in the powdered sample, while the secondary one at 15.6 µm is of a low amplitude in both samples.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.ad38963ac0fe50178382951/sdaolpUECMynit/0202CSPE&app=m&a=0&c=1cbf38a911d6e0bef4cff605b284362f&ct=x&pn=gnp.elif" alt=""></p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.4ff3f9a9c0fe59658382951/sdaolpUECMynit/0202CSPE&app=m&a=0&c=9e7ff0973b952ce0eed7a0fbfc5b24cc&ct=x&pn=gnp.elif" alt=""></p><p><strong>Conclusions</strong></p><p>The important finding is the presence of the two distinct shock darkening mechanisms in ordinary chondrite material with characteristic material fabric and distinct pressure regions. These two regions are separated by a pressure interval where no darkening occurs. Thus, the volume of the darkened material produced during asteroid collisions may be somewhat lower than assumed from a continuous darkening process. While the darkening mainly affects the UV-VIS-NIR region and 1 and 2-µm silicate absorption bands, it does not significantly affect the silicate spectral features in the MIR region. These are more affected by material roughness. MIR observations have the potential to identify darkened ordinary chondrite material with an otherwise featureless UV-VIS-NIR spectrum.</p>


2021 ◽  
Author(s):  
Ali Ayoubikaskooli ◽  
Abdol Mohammad Ghaedi ◽  
Hamid Reza Shamlouei ◽  
Yadollah Saghapour

Abstract In this research, the C50 fullerene was employed as the source of the π electrons and the electron donor-acceptor groups were used to enhance its optical properties. Considerable enhancement in its electronic and optical property of as the result of donor and acceptor group presence was observed. For instance, in UV-Visible absorption spectrum, the number of absorption lines significantly increase which may be the relaxation of the electronic transition selection rules. Considerably, the substituted forms of C50, has numbers of absorption bands in near infrared region. The BH2–C50-NCH3Li and NO–C50-NCH3Li molecules have superior improvement in optical properties. Finally, the donor and acceptor groups influence on non-linear optical properties (NLO) of C50 were explored and the considerable improvement in NLO properties of C50 was observed which the NLO improvements for BH2-C50-NCH3Li and NO-C50-CH2Li cases is higher than others.


Sign in / Sign up

Export Citation Format

Share Document