scholarly journals XRD and UV-Vis Spectroscopic Studies of Lead Tin Sulphide (PbSnS) Thin Films

2021 ◽  
Vol 18 (20) ◽  
pp. 16
Author(s):  
John Damisa ◽  
Joseph Onyeka Emegha

The effects of deposition cycles on the structural and optical properties of lead tin sulphide (PbSnS) thin films have been described. Successive ionic layer adsorption and reaction (SILAR) method was used to deposit the ternary material on soda-lime substrates. In the present work, the PbSnS films were grown using lead nitrate, tin chloride dehydrate and thioacetamide solutions as sources of Pb, Sn and S, respectively. XRD measurements revealed that the deposited films were polycrystalline in nature with strong adherent to the substrates. The transmittance was found to be high in the near infrared regions of the electromagnetic radiation and, also increased with deposition cycles. The band gap energy was found to vary from 1.70 to 1.75 eV for 10 and 35 deposition cycles. The study indicates that SILAR is an excellent method in depositing good quality films for device applications. HIGHLIGHTS SILAR is an excellent technique for depositing thin films of lead tin sulphide (PbSnS) Deposition cycles influences the XRD and optical properties of PbSnS thin films PbSnS thin films are useful for solar cell fabrications The band gaps of the PbSnS varies from 1.70 to 1.75 eV with deposition cycles

2019 ◽  
Vol 60 (5) ◽  
pp. 1006-1012
Author(s):  
Ali H A Jalaukhan ◽  
Mustafa M A Hussein

Fullerene thin films of about 200 nm thicknesses have been deposited by thermal evaporation method on soda lime glass at substrate temperature 303 and 403K under pressure about 10-5 mbar. This study concentrated on the influence of substrate temperature on the optical properties of C60 thin films within the visible range. Optical characterization has been carried out at room temperature using the absorption spectra, at normal incidence, in range (200-900) nm. The absorption and extinction coefficients of the samples have been evaluated according to the variation in the UV- Visible spectrum. Increasing substrate temperature causes decreasing in optical band gap energy, for direct allowed transitions, and slightly changing in refractive index. This incident was due to the reducing of interatomic intervals, which may be correlating a decrease in the amplitude of atomic vibrations around their equilibrium sites.


Author(s):  
Atefeh Nazari Setayesh ◽  
Hassan Sedghi

Background: In this work, CdS thin films were synthesized by sol-gel method (spin coating technique) on glass substrates to investigate the optical behavior of the film. Methods: Different substrate spin coating speeds of 2400, 3000, 3600 rpm and different Ni dopant concentrations of 0 wt.%, 2.5 wt.%, 5 wt.%) were investigated. The optical properties of thin films such as refraction index, extinction coefficient, dielectric constant and optical band gap energy of the layers were discussed using spectroscopic ellipsometry method in the wavelength range of 300 to 900 nm. Results: It can be deduced that substrate rotation speed and dopant concentration has influenced the optical properties of thin films. By decreasing rotation speed of the substrate which results in films with more thicknesses, more optical interferences were appeared in the results. Conclusion: The samples doped with Ni comparing to pure ones have had more optical band gap energy.


2021 ◽  
Vol 50 (5) ◽  
pp. 2576-2583
Author(s):  
Uche Paul Onochie ◽  
Sunday Chukwuyem Ikpeseni ◽  
Anthony Egwu Igweoko ◽  
Hilary Ijeoma Owamah ◽  
Chinecherem Collins Aluma ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Animesh Pandey ◽  
Reena Yadav ◽  
Mandeep Kaur ◽  
Preetam Singh ◽  
Anurag Gupta ◽  
...  

AbstractTopological insulators (TIs) possess exciting nonlinear optical properties due to presence of metallic surface states with the Dirac fermions and are predicted as a promising material for broadspectral phodotection ranging from UV (ultraviolet) to deep IR (infrared) or terahertz range. The recent experimental reports demonstrating nonlinear optical properties are mostly carried out on non-flexible substrates and there is a huge demand for the fabrication of high performing flexible optoelectronic devices using new exotic materials due to their potential applications in wearable devices, communications, sensors, imaging etc. Here first time we integrate the thin films of TIs (Bi2Te3) with the flexible PET (polyethylene terephthalate) substrate and report the strong light absorption properties in these devices. Owing to small band gap material, evolving bulk and gapless surface state conduction, we observe high responsivity and detectivity at NIR (near infrared) wavelengths (39 A/W, 6.1 × 108 Jones for 1064 nm and 58 A/W, 6.1 × 108 Jones for 1550 nm). TIs based flexible devices show that photocurrent is linearly dependent on the incident laser power and applied bias voltage. Devices also show very fast response and decay times. Thus we believe that the superior optoelectronic properties reported here pave the way for making TIs based flexible optoelectronic devices.


Coatings ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 248 ◽  
Author(s):  
Benjamin Schumm ◽  
Thomas Abendroth ◽  
Saleh A. Alajlan ◽  
Ahmed M. Almogbel ◽  
Holger Althues ◽  
...  

Multilayered nanocoatings allow outstanding properties with broad potential for glazing applications. Here, we report on the development of a multilayer nanocoating for zinc oxide (ZnO) and antimony doped tin oxide (ATO). The combination of ZnO and ATO thin films with their promising optical properties is a cost-efficient alternative for the production of energy-efficient glazing. It is an effective modification of the building envelope to reduce current high domestic demand of electrical power for air conditioning, especially in hot climates like Saudi Arabia. In this paper, we report the development of a nanocoating based on the combination of ZnO and ATO. Principle material and film investigations were carried out on lab-scale by dip coating with chemical solution deposition (CSD), while with regard to production processes, chemical vapor deposition (CVD) processes were evaluated in a second stage of the film development. It was found that with both processes, high-quality thin films and multilayer coatings with outstanding optical properties can be prepared. While keeping the optical transmission in the visible range at around 80%, only 10% of the NIR (near infrared) and below 1% of UV (ultraviolet) light passes these coatings. However, in contrast to CSD, the CVD process allows a free combination of the multilayer film sequence, which is of high relevance for production processes. Furthermore, it can be potentially integrated in float glass production lines.


2015 ◽  
Vol 39 (1) ◽  
pp. 25-30 ◽  
Author(s):  
A Hasnat Rubel ◽  
J Podder

Aluminium doped cadmium sulphide thin films were prepared on glass substrate using aqueous solution of cadmium sulphide and thiourea salts by spray pyrolysis deposition (SPD) technique. Its optical properties were analyzed as a function of doping concentration. The direct energy band-gap of Al-doped CdS films was estimated in the range of 2.25 to 2.48 eV. The optical spectra of Cd1-xAlxS ternary system exhibit high absorption near visible region and transmission throughout the near-infrared region (600 - 1200 nm). Thus so obtained hetero-junction films are suitable for fabrication of photo detectors, solar cells and other optoelectronics devices.Journal of Bangladesh Academy of Sciences, Vol. 39, No. 1, 25-30, 2015


2017 ◽  
Vol 94 ◽  
pp. 528-536 ◽  
Author(s):  
Kester O. Ighodalo ◽  
Daniel Obi ◽  
A. Agbogu ◽  
Blessing N. Ezealigo ◽  
Assumpta C. Nwanya ◽  
...  

2018 ◽  
Vol 96 (7) ◽  
pp. 804-809 ◽  
Author(s):  
Harun Güney ◽  
Demet İskenderoğlu

The undoped and 1%, 2%, and 3% Cd-doped MgO nanostructures were grown by SILAR method on the soda lime glass substrate. X-ray diffractometer (XRD), ultraviolet–visible spectrometer, scanning electron microscope, photoluminescence (PL), and X-ray photoelectron spectroscopy measurements were taken to investigate Cd doping effects on the structural, optical, and morphological properties of MgO nanostructures. XRD measurements show that the samples have cubic structure and planes of (200), (220) of MgO and (111), (200), and (220) of CdO. It was observed that band gaps increase with rising Cd doping rate in MgO thin film. The surface morphology of samples demonstrates that MgO nanostructures have been affected by the Cd doping. PL measurements show that undoped and Cd-doped MgO thin films can radiate in the visible emission region.


2013 ◽  
Vol 716 ◽  
pp. 325-327
Author(s):  
Xiao Yan Dai ◽  
Cheng Wu Shi ◽  
Yan Ru Zhang ◽  
Min Yao

In this paper, CdTe thin films were deposited on soda-lime glass substrates using CdTe powder as a source by close-spaced sublimation at higher source temperature of 700°C. The influence of the deposition time and the source-substrate distance on the chemical composition, crystal phase, surface morphology and optical band gap of CdTe thin films was systemically investigated by energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscope and the ultraviolet-visible-near infrared absorption spectra, respectively. At the deposition time of 60 min and the source-substrate distance of 5 mm, the CdTe thin films had pyramid appearance with the grain size of 15 μm.


2016 ◽  
Vol 40 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Md Saiful Islam ◽  
Chitra Das ◽  
Mehnaz Sharmin ◽  
Kazi Md Amzad Hussain ◽  
Shamima Choudhury

Effects of indium doping (concentration 0.2, 0.3 and 0.4%) on the optical properties of GaAs thin films were studied. Thin films of 600 nm were grown onto chemically and ultrasonically cleaned glass substrate by thermal evaporation method in high vacuum (~10-4 Pa) at 50°C fixed substrate temperature. The samples were annealed for 15 minutes at a fixed temperature of 200°C. The thicknesses of films were being measured in situ by a quartz crystal thickness monitor during deposition. The transmittance and reflectance data were found using UV-VIS-NIR spectrophotometer in the photon wavelength range of 310 ~ 2500 nm. These data were utilized to compute the absorption coefficient, refractive index, extinction co-efficient and band gap energy of the studied films. Here transmittance was found 78 for 0.2% indium doping concentration. The band gap energy decreased with the increase of doping concentration.Journal of Bangladesh Academy of Sciences, Vol. 40, No. 2, 179-186, 2016


Sign in / Sign up

Export Citation Format

Share Document