scholarly journals FEATHER: A Proposed Lightweight Protocol for Mobile Cloud Computing Security

2020 ◽  
Vol 10 (4) ◽  
pp. 6116-6125
Author(s):  
A. Alamer ◽  
B. Soh

Ensuring security for lightweight cryptosystems in mobile cloud computing is challenging. Encryption speed and battery consumption must be maintained while securing mobile devices, the server, and the communication channel. This study proposes a lightweight security protocol called FEATHER which implements MICKEY 2.0 to generate keystream in the cloud server and to perform mobile device decryption and encryption. FEATHER can be used to implement secure parameters and lightweight mechanisms for communication among mobile devices and between them and a cloud server. FEATHER is faster than the existing CLOAK protocol and consumes less battery power. FEATHER also allows more mobile devices to communicate at the same time during very short time periods, maintain security for more applications with minimum computation ability. FEATHER meets mobile cloud computing requirements of speed, identity, and confidentiality assurances, compatibility with mobile devices, and effective communication between cloud servers and mobile devices using an unsafe communication channel.

2016 ◽  
Vol 15 (1) ◽  
pp. 1-17
Author(s):  
Dasari Naga RAJU ◽  
Vankadara SARITHA

Despite the expanding utilization of mobile devices, exploring their full resources is an issue due to their limited battery power, processing power and data storage. The integration of cloud computing with mobile devices solves these issues by offloading major computation in to the cloud. This paper provides a survey on Mobile Cloud Computing (MCC), which helps to understand the MCC architecture, communication issues and applications. An extensive survey is made of communication issues and different approaches are discussed to overcome the communication issues. Finally open research challenges are also provided which will be helpful for active researchers in the field of MCC.


2021 ◽  
Vol 2 (3) ◽  
pp. 118-122
Author(s):  
Dr. Jennifer S. Raj

As the need for super-fast mobile devices incorporating cloud computing technology continues to be the need of the hour, Mobile Cloud Computing (MCC) serves as the platform for mobile users to share data with others, store information on the cloud and also compute using the data. Over the years, the most widely preferred encryption that has proven to be reliable is Attribute Based Encryption (ABE). However, this encryption methodology requires expensive pairing operation which makes it unsuitable for MCC. As a result of this, MCC remains slow in reaching the crowd due to the challenge of resource-constrained mobile devices. To tackle this resource-constraint we propose a novel method of outsourcing operations to resource-rich cloud servers so that the constraint on resources does not hinder proper functioning of the mobile device. There are a number of advantages when data sharing is incorporated with lightweight fine-grain data sharing methodology. This method has a number of advantages such as CCA security level, resisting decryption key exposure and supporting verifiable outsourced decryption. Simulation results indicate that the performance analysis and concrete security proof is apt for MCC environment.


2020 ◽  
Vol 10 (51) ◽  
pp. 212-222
Author(s):  
Boubakeur Annane ◽  
Adel Alti ◽  
Osman Ghazali

Recently, mobile computing is known as a fast-growing utilization of people's daily life. However, the main is the limited mobile devices’ resources such as processing capability, storage space and battery life. With the development of cloud computing, mobile devices’ resources are improved with the help of cloud services, which resulted an emerged technology named Mobile Cloud Computing (MCC). Although the MCC has several advantages for mobile users, it is also challenged by many critical issues like security and privacy of the mobile user's data that offloaded on the cloud’ servers and processed on the virtual machines (VMs). In virtualization, various investigations showed that malicious users are able to break down the cloud security methods by spreading their VMs in order to alter or violate the user sensitive data that executed on cloud’ VMs. This paper deeply analyzes the recent MCC based virtualization approaches and methods by criticizing them. We found out that no approach protects the data from being stolen while distributed VMs that deployed on different cloud servers exchanging data. Hence, the paper provides practical gaps related to virtualization in MCC and future perspectives.


Author(s):  
N. Divya

Cloud computing is a variety of service provider through the internet mobile cloud computing is a simplicity cloud computing in which same mobile devices included among them. As the mobile devices increasing in large number day by day. In existing system Mobile cloud computing used to overcome the limitations of smart phones such as battery life time, limited computational power, size of memory and uncertain network connectivity . To overcome this limitations in offloading technique novel frame work will be used in this files from user are transmitted to cloud in single path. This is more time consuming and takes more time in transmitting files. Proposed system we use this technique in edge cloud computing server to reduce latency and also to reduce energy consumption and perform task with efficiency. In addition parallelization is used for the execution of the method in cloud server to reduce energy and execution time.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jiawei Zhang ◽  
Ning Lu ◽  
Teng Li ◽  
Jianfeng Ma

Mobile cloud computing (MCC) is embracing rapid development these days and able to provide data outsourcing and sharing services for cloud users with pervasively smart mobile devices. Although these services bring various conveniences, many security concerns such as illegally access and user privacy leakage are inflicted. Aiming to protect the security of cloud data sharing against unauthorized accesses, many studies have been conducted for fine-grained access control using ciphertext-policy attribute-based encryption (CP-ABE). However, a practical and secure data sharing scheme that simultaneously supports fine-grained access control, large university, key escrow free, and privacy protection in MCC with expressive access policy, high efficiency, verifiability, and exculpability on resource-limited mobile devices has not been fully explored yet. Therefore, we investigate the challenge and propose an Efficient and Multiauthority Large Universe Policy-Hiding Data Sharing (EMA-LUPHDS) scheme. In this scheme, we employ fully hidden policy to preserve the user privacy in access policy. To adapt to large scale and distributed MCC environment, we optimize multiauthority CP-ABE to be compatible with large attribute universe. Meanwhile, for the efficiency purpose, online/offline and verifiable outsourced decryption techniques with exculpability are leveraged in our scheme. In the end, we demonstrate the flexibility and high efficiency of our proposal for data sharing in MCC by extensive performance evaluation.


2015 ◽  
pp. 1933-1955
Author(s):  
Tolga Soyata ◽  
He Ba ◽  
Wendi Heinzelman ◽  
Minseok Kwon ◽  
Jiye Shi

With the recent advances in cloud computing and the capabilities of mobile devices, the state-of-the-art of mobile computing is at an inflection point, where compute-intensive applications can now run on today's mobile devices with limited computational capabilities. This is achieved by using the communications capabilities of mobile devices to establish high-speed connections to vast computational resources located in the cloud. While the execution scheme based on this mobile-cloud collaboration opens the door to many applications that can tolerate response times on the order of seconds and minutes, it proves to be an inadequate platform for running applications demanding real-time response within a fraction of a second. In this chapter, the authors describe the state-of-the-art in mobile-cloud computing as well as the challenges faced by traditional approaches in terms of their latency and energy efficiency. They also introduce the use of cloudlets as an approach for extending the utility of mobile-cloud computing by providing compute and storage resources accessible at the edge of the network, both for end processing of applications as well as for managing the distribution of applications to other distributed compute resources.


2015 ◽  
pp. 1561-1584
Author(s):  
Hassan Takabi ◽  
Saman Taghavi Zargar ◽  
James B. D. Joshi

Mobile cloud computing has grown out of two hot technology trends, mobility and cloud. The emergence of cloud computing and its extension into the mobile domain creates the potential for a global, interconnected mobile cloud computing environment that will allow the entire mobile ecosystem to enrich their services across multiple networks. We can utilize significant optimization and increased operating power offered by cloud computing to enable seamless and transparent use of cloud resources to extend the capability of resource constrained mobile devices. However, in order to realize mobile cloud computing, we need to develop mechanisms to achieve interoperability among heterogeneous and distributed devices. We need solutions to discover best available resources in the cloud servers based on the user demands and approaches to deliver desired resources and services efficiently and in a timely fashion to the mobile terminals. Furthermore, while mobile cloud computing has tremendous potential to enable the mobile terminals to have access to powerful and reliable computing resources anywhere and anytime, we must consider several issues including privacy and security, and reliability in realizing mobile cloud computing. In this chapter, the authors first explore the architectural components required to realize a mobile cloud computing infrastructure. They then discuss mobile cloud computing features with their unique privacy and security implications. They present unique issues of mobile cloud computing that exacerbate privacy and security challenges. They also discuss various approaches to address these challenges and explore the future work needed to provide a trustworthy mobile cloud computing environment.


Author(s):  
Parkavi R ◽  
Priyanka C ◽  
Sujitha S. ◽  
Sheik Abdullah A

Mobile Cloud Computing (MCC) which combines mobile computing and cloud computing, has become one of the industry ring words and a major conversation thread in the IT world with an explosive development of the mobile applications and emerging of cloud computing idea, the MCC has become a possible technology for the mobile service users. The concepts of Cloud computing are naturally meshed with mobile devices to allow on-the-go functionalities and benefits. The mobile cloud computing is emerging as one of the most important branches of cloud computing and it is expected to expand the mobile ecosystems. As more mobile devices enter the market and evolve, certainly security issues will grow as well. Also, enormous growth in the variety of devices connected to the Internet will further drive security needs. MCC provides a platform where mobile users make use of cloud services on mobile devices. The use of MCC minimizes the performance, compatibility, and lack of resources issues in mobile computing environment.


Author(s):  
Atta ur Rehman Khan ◽  
Abdul Nasir Khan

Mobile devices are gaining high popularity due to support for a wide range of applications. However, the mobile devices are resource constrained and many applications require high resources. To cater to this issue, the researchers envision usage of mobile cloud computing technology which offers high performance computing, execution of resource intensive applications, and energy efficiency. This chapter highlights importance of mobile devices, high performance applications, and the computing challenges of mobile devices. It also provides a brief introduction to mobile cloud computing technology, its architecture, types of mobile applications, computation offloading process, effective offloading challenges, and high performance computing application on mobile devises that are enabled by mobile cloud computing technology.


Sign in / Sign up

Export Citation Format

Share Document