scholarly journals Two-Switch High Gain Non-Isolated Cuk Converter

2020 ◽  
Vol 10 (5) ◽  
pp. 6362-6367
Author(s):  
Y. Almalaq ◽  
M. Matin

This paper introduces a two-switch high gain non-isolated Cuk converter which can be used as a high gain DC-DC converter in renewable energy, such as photovoltaic and fuel cell, applications because their output is low. As the conventional, the proposed Cuk converter provides negative output voltage but with a higher voltage in magnitude. The main advantage of the proposed converter is having lower voltage stress with the ability to maintain a higher voltage gain. By combining a switched-inductor and a switched-capacitor into the conventional Cuk converter, the proposed Cuk converter has the ability to reach 13 times the input voltage for a duty cycle D of 0.75. Also, by attaching more switched-inductors to the proposed Cuk converter, more voltage gain can be achieved. A complete theoretical analysis of the Continuous Conduction Mode (CCM) of the proposed Cuk converter is presented and the key aspects of the circuit design have been derived. Also, a comparison in terms of voltage gain and voltage stress between the proposed Cuk converter and Cuk converters using other techniques is presented. The proposed Cuk converter has been designed for 100W rated power, -152V output voltage, 50kHz switching frequency, and 75% duty cycle. The presented converter is simulated in Matlab/Simulink and the results are discussed.

In this paper, PI controller in the active switched capacitor network is employed to achieve robust control under disturbance by maintaining sustained output voltage for varying input voltage. Active switched capacitor in the high gain DC–DC circuit efficiently increases voltage gain due to the combination of LC network with minimum duty cycle. The proposed circuit is the modification of typical high gain DC converter and modified network is simple in structure due to reduce in number of switch components and the voltage stress on the capacitor, diodes and across switches are reduced compared to base network. This paper presents the design, operation and analysis of the modified topology and the performance comparison with base converter is presented. Simulation is carried out using MATLAB software for the proposed system with and without PI controller and variation in the output voltage between both the circuits is tabulated and comparative analysis is discussed.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3747 ◽  
Author(s):  
Abualkasim Bakeer ◽  
Andrii Chub ◽  
Dmitri Vinnikov

This paper proposes a high gain DC–DC converter based on the series resonant converter (SRC) for photovoltaic (PV) applications. This study considers low power applications, where the resonant inductance is usually relatively small to reduce the cost of the converter realization, which results in low-quality factor values. On the other hand, these SRCs can be controlled at a fixed switching frequency. The proposed topology utilizes a bidirectional switch (AC switch) to regulate the input voltage in a wide range. This study shows that the existing topology with a bidirectional switch has a limited input voltage regulation range. To avoid this issue, the resonant tank is rearranged in the proposed converter to the resonance capacitor before the bidirectional switch. By this rearrangement, the dependence of the DC voltage gain on the duty cycle is changed, so the proposed converter requires a smaller duty cycle than that of the existing counterpart at the same gain. Theoretical analysis shows that the input voltage regulation range is extended to the region of high DC voltage gain values at the maximum input current. Contrary to the existing counterpart, the proposed converter can be realized with a wide range of the resonant inductance values without compromising the input voltage regulation range. Nevertheless, the proposed converter maintains advantages of the SRC, such as zero voltage switching (ZVS) turn-on of the primary-side semiconductor switches. In addition, the output-side diodes are turned off at zero current. The proposed converter is analyzed and compared with the existing counterpart theoretically and experimentally. A 300 W experimental prototype is used to validate the theoretical analysis of the proposed converter. The peak efficiency of the converter is 96.5%.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2640 ◽  
Author(s):  
Xiang Lin ◽  
Faqiang Wang ◽  
Herbert H. C. Iu

Bridgeless power factor correction (PFC) converters have a reduced number of semiconductors in the current flowing path, contributing to low conduction losses. In this paper, a new bridgeless high step-up voltage gain PFC converter is proposed, analyzed and validated for high voltage applications. Compared to its conventional counterpart, the input rectifier bridge in the proposed bridgeless PFC converter is completely eliminated. As a result, its conduction losses are reduced. Also, the current flowing through the power switches in the proposed bridgeless PFC converter is only half of the current flowing through the rectifier diodes in its conventional counterpart, therefore, the conduction losses can be further improved. Moreover, in the proposed bridgeless PFC converter, not only the voltage stress of power switches is lower than the output voltage, but the voltage stress of the output diodes is lower than the conventional counterpart. In addition, this proposed bridgeless PFC converter features a simple circuit structure and high PFC performance. Finally, the proposed bridgeless PFC converter is analyzed and designed in the discontinuous conduction mode (DCM). The simulation results are presented to verify the effectiveness of the proposed bridgeless PFC converter.


Author(s):  
M. A. Z. A. Rashid ◽  
A. Ponniran ◽  
M. K. R. Noor ◽  
J. N. Jumadril ◽  
M. H. Yatim ◽  
...  

This paper presents the optimization of PFC Cuk converter parameter design for the minimization of THD and voltage ripple. In this study, the PFC Cuk converter is designed to operate in discontinuous conduction mode (DCM) in order to achieve almost unity power factor. The passive components, i.e., inductor and capacitor are designed based on switching frequency and resonant frequency. Nevertheless, the ranges of duty cycle for buck and boost operations are 0<D<0.5 and 0.5<D<1, respectively for the output voltage variation of the converter. The principle of the parameters design optimization is based on the balancing energy compensation between the input capacitor and output inductor for minimization of THD current. In addition, the selection of high output capacitance will minimize the output voltage ripple significantly. A 65 W PFC Cuk converter prototype is developed and experimentally tested to confirm the parameters design optimization principle. The experimental results show that the THD current is reduced to 4.5% from 61.3% and the output voltage ripple is reduced to 7 V from 18 V after parameters optimization are realized. Furthermore, it is confirmed that the output voltage ripple frequency is always double of the input line frequency, 50 Hz and the output voltage ripple is always lower than the maximum input voltage ripple.


Author(s):  
R. Birundha ◽  
Dr. P. Maruthapandi

A new single switch solar powered high gain step-up DC-DC converter is proposed for plug-in hybrid battery charger in Electric vehicle (EV). The proposed topology utilizes a L2C3D2network to obtain high voltage gain and reduce the voltage stress on the power switch. Additionally, the proposed converter has a universal input voltage in order to suit the soft output characteristics of the fuel cell. The fuel cell has a relatively low output voltage and high current, and it has soft output characteristics as its output voltage drops as the output current increases. Therefore, the fuel cell cannot be directly interfaced to the dc-link bus (400V) of the inverter inside the EV. This dc-dc converter has a universal input voltage feature with wide voltage gain range to suit the soft output characteristics of the fuel cell. Additionally, this dc-dc converter has to have low input current ripple to prolong the life time of the fuel /solar cell, and a common ground between its input and output ports to avoid additional EMI and maintenance safety problem. This control strategy is modelled and simulated using MATLAB -Simulink. A proto type experimental has been fabricated and tested. The experimental analysis was done and the results are in line with the simulation results.


2018 ◽  
Vol 28 (01) ◽  
pp. 1950014
Author(s):  
Ghasem Haghshenas ◽  
Sayyed Mohammad Mehdi Mirtalaei ◽  
Hamed Mordmand ◽  
Ghazanfar Shahgholian

In this paper, a novel high step-up single switch DC–DC converter with soft switching is presented. The main application of this converter is the connection of photovoltaic (PV) system to a 400[Formula: see text]V DC-bus. The proposed converter achieves high step-up voltage gain with small duty cycle by a combined boost and fly-back topology. Also, its switch voltage stress is lower than the output voltage. Besides, in the proposed converter, any auxiliary switch or magnetic core has not been used — therefore, the number of converter components has not been increased much in comparison with the conventional boost-fly-back converter. The operation principles of the converter and its theoretical operation waveforms are presented. In order to evaluate the theoretical analysis, a prototype of the converter is designed and experimentally implemented. The practical results are presented for a 100[Formula: see text]W boost-fly-back converter with input voltage of 40[Formula: see text]V and output voltage of 400[Formula: see text]V. Also, the output capacitor is designed to have less than 1% ripple on output voltage.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050188
Author(s):  
G. Indira Kishore ◽  
Ramesh Kumar Tripathi

With photovoltaic or fuel cell as a source, the high voltage required at DC bus as input for inverter can be obtained by high gain DC-DC converters. This can be achieved by implementing switched capacitor (SC) cells. Switched capacitors have the ability to produce high static gain and at the same time, they limit the voltage stress across the components. This paper proposes a high static gain, single switch DC converter based on the SC cells to develop high gain. These cells not only boost the voltage gain but also reduce the voltage stress at the active components. This converter also features a single active switch, low input ripple current through the inductor, absence of snubber circuit as the proposed converter does not assist the voltage spike across the active switch. The proposed converter allows high switching frequency and therefore results in a smaller size. The voltage gain can be increased further by adding the switched cells. In this paper, the operation in CCM, DCM, and design of components for the proposed converter is discussed. The MATLAB/SIMLINK and hardware-based studies for the proposed converters have been discussed to validate the specified features.


Author(s):  
Krishnaveni Kommuri ◽  
Venkata Ratnam Kolluru

The establishment of the latest IoT systems available today such as smart cities, smart buildings, and smart homes and wireless sensor networks (WSNs) are let the main design restriction on the inadequate supply of battery power. Hence proposing a solar-based photovoltaic (PV) system which is designed DC-DC buck-boost converter with an improved modular maximum power point tracking (MPPT) algorithm. The output voltage depends on the inductor, capacitor values, metal oxide semiconductor field effect transistor (MOSFET) switching frequency, and duty cycle. This paper focuses on the design and simulation of min ripple current/voltage and improved efficiency at PV array output, to store DC power. The stored DC power will be used for smart IoT systems. From the simulation results, the current ripples are observed to be minimized from 0.062 A to 0.02 A maintaining the duty cycle at 61.09 for switching frequencies ranges from 300 kHz to 10 MHz at the input voltage 48 V and the output voltage in buck mode 24 V, boost mode 100 V by maintaining constant 99.7 efficiencies. The improvised approach is compared to various existed techniques. It is noticed that the results are more useful for the self-powered Embedded & Internet of Things systems.


2019 ◽  
Vol 25 (3) ◽  
pp. 50-55 ◽  
Author(s):  
Davood Ghaderi ◽  
Gokay Bayrak

Renewable Energy Sources (RES) including full cells, wind turbines, and photovoltaic panels, widely are spreading. Among all the renewable energy sources, solar power generation system tops the list. The first choice is the boost converter when the voltage step-up is the issue. But the most important subject is applying an efficient structure with high gain, cheap and quick controller circuit. Our proposed cascaded boost converter is one of such converters which consists of several cheap components such as diode, inductor, capacitor and power switch, which has same switching frequency and phase shift in comparison with conventional boost converters. In comparison with the classic cascaded boost converter, the voltage gain for the proposed structure is very high and by forming a preamplifier layer, for a duty cycle of 80 % by adding only two diodes, one inductor, and one capacitor for the second block, voltage gain is increased by 5 times compared to the classic boost converter. The proposed method provides the increased output voltage along with the duty cycle. The projected strategy has been verified with the help of Matlab/Simulink. Also, a hardware implementation of the proposed converter has been done around 200 W by applying a Jiangyin HR-200W-24V type solar panel.


Author(s):  
Arunkumari T ◽  
I. Jagadeesh ◽  
Indragandhi V

In this manuscript, a DC-DC converter of modified multilevel sepic model with single switch is proposed here. The designed converter combines the voltage tripler circuit, which improves the voltage gain and reduces the voltage ripple of the system. Another feature of the designed converter is reduces the voltage stress and utilized for PV based applications. The operation of the designed converter in Continuous-Conduction Mode (CCM) is discussed. The converter boosts the PV input voltage of 30 V to 400 V output voltages. The efficiency attained by the designed converter is 94%. The Theoretical analysis of the designed converter is presented and it is done with MATLAB simulink. To analyse the performance of this DC-DC converter a model was developed and tested.  From the experimental results obtained, it is analysed that the converter performs better and suitable for PV based application.


Sign in / Sign up

Export Citation Format

Share Document