scholarly journals Optimization of PFC cuk converter parameters design for minimization of THD and voltage ripple

Author(s):  
M. A. Z. A. Rashid ◽  
A. Ponniran ◽  
M. K. R. Noor ◽  
J. N. Jumadril ◽  
M. H. Yatim ◽  
...  

This paper presents the optimization of PFC Cuk converter parameter design for the minimization of THD and voltage ripple. In this study, the PFC Cuk converter is designed to operate in discontinuous conduction mode (DCM) in order to achieve almost unity power factor. The passive components, i.e., inductor and capacitor are designed based on switching frequency and resonant frequency. Nevertheless, the ranges of duty cycle for buck and boost operations are 0<D<0.5 and 0.5<D<1, respectively for the output voltage variation of the converter. The principle of the parameters design optimization is based on the balancing energy compensation between the input capacitor and output inductor for minimization of THD current. In addition, the selection of high output capacitance will minimize the output voltage ripple significantly. A 65 W PFC Cuk converter prototype is developed and experimentally tested to confirm the parameters design optimization principle. The experimental results show that the THD current is reduced to 4.5% from 61.3% and the output voltage ripple is reduced to 7 V from 18 V after parameters optimization are realized. Furthermore, it is confirmed that the output voltage ripple frequency is always double of the input line frequency, 50 Hz and the output voltage ripple is always lower than the maximum input voltage ripple.

2018 ◽  
Vol 7 (4.30) ◽  
pp. 240 ◽  
Author(s):  
M. K. R. Noor ◽  
A. Ponniran ◽  
M. A. Z. A. Rashid ◽  
A. A. Bakar ◽  
J. N. Jumadril ◽  
...  

This paper discusses the current total harmonic distortion (THDi) and voltage ripple minimization of SEPIC converter based on parameters design optimization. This conventional PFC SEPIC converter is designed to operate in discontinuous conduction mode in order to achieve almost unity power factor. The passive components, i.e., inductor and capacitor are designed based on switching frequency and resonant frequency. Meanwhile, the ranges of duty cycle for buck and boost operations are between 0<D<0.5 and 0.5<D<1, respectively, for the output voltage variation of the converter. The principle of the parameters design optimization is based on the balancing energy compensation between the input capacitor and output inductor. The experimental results show that, the current THD is reduced to 2.66% from 70.9% after optimization process is conducted. Furthermore, it is confirmed that the output voltage ripple frequency is always double from the input line frequency, fL = 2foutand the output voltage ripple is always lower than the maximum input voltage ripple. Therefore, the designed parameters of the experimental converter is confirmed with approximately 65 W of the converter output power.


2020 ◽  
Vol 10 (5) ◽  
pp. 6362-6367
Author(s):  
Y. Almalaq ◽  
M. Matin

This paper introduces a two-switch high gain non-isolated Cuk converter which can be used as a high gain DC-DC converter in renewable energy, such as photovoltaic and fuel cell, applications because their output is low. As the conventional, the proposed Cuk converter provides negative output voltage but with a higher voltage in magnitude. The main advantage of the proposed converter is having lower voltage stress with the ability to maintain a higher voltage gain. By combining a switched-inductor and a switched-capacitor into the conventional Cuk converter, the proposed Cuk converter has the ability to reach 13 times the input voltage for a duty cycle D of 0.75. Also, by attaching more switched-inductors to the proposed Cuk converter, more voltage gain can be achieved. A complete theoretical analysis of the Continuous Conduction Mode (CCM) of the proposed Cuk converter is presented and the key aspects of the circuit design have been derived. Also, a comparison in terms of voltage gain and voltage stress between the proposed Cuk converter and Cuk converters using other techniques is presented. The proposed Cuk converter has been designed for 100W rated power, -152V output voltage, 50kHz switching frequency, and 75% duty cycle. The presented converter is simulated in Matlab/Simulink and the results are discussed.


2021 ◽  
Vol 10 (4) ◽  
pp. 1856-1863
Author(s):  
Mini P. Varghese ◽  
A. Manjunatha ◽  
T. V. Snehaprabha

Voltage regulator modules (VRM) need to have low output voltage ripple and tight efficiency to power advanced microprocessors. This paper explains a phase shedding technique to enhance efficiency and its impact on output voltage ripple. In this study, analysis was done on a 4-phase buck converter which is having an input voltage of 45-65 V and delivers an output of 9 V, 12A with a switching frequency of 200Khz. The phase shedding control scheme is suitable for applications such as power sources for programmable logic controllers, which is a part of SCADA systems, which requires a low voltage and high current power supply. Working of a multiphase buck converter with phase shedding is modelled and verified using Matlab/Simulink software. The simulation results show the effect of the phase shedding technique on efficiency in varying load conditions and the effect of an increase of the voltage ripple at the output.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1623
Author(s):  
Bor-Ren Lin

In order to realize emission-free solutions and clean transportation alternatives, this paper presents a new DC converter with pulse frequency control for a battery charger in electric vehicles (EVs) or light electric vehicles (LEVs). The circuit configuration includes a resonant tank on the high-voltage side and two variable winding sets on the output side to achieve wide output voltage operation for a universal LEV battery charger. The input terminal of the presented converter is a from DC microgrid with voltage levels of 380, 760, or 1500 V for house, industry plant, or DC transportation vehicle demands, respectively. To reduce voltage stresses on active devices, a cascade circuit structure with less voltage rating on power semiconductors is used on the primary side. Two resonant capacitors were selected on the resonant tank, not only to achieve the two input voltage balance problem but also to realize the resonant operation to control load voltage. By using the variable switching frequency approach to regulate load voltage, active switches are turned on with soft switching operation to improve converter efficiency. In order to achieve wide output voltage capability for universal battery charger demands such as scooters, electric motorbikes, Li-ion e-trikes, golf carts, luxury golf cars, and quad applications, two variable winding sets were selected to have a wide voltage output (50~160 V). Finally, experiments with a 1 kW rated prototype were demonstrated to validate the performance and benefits of presented converter.


2020 ◽  
Vol 11 (4) ◽  
pp. 64 ◽  
Author(s):  
Zhengxin Liu ◽  
Jiuyu Du ◽  
Boyang Yu

Direct current to direct current (DC/DC) converters are required to have higher voltage gains in some applications for electric vehicles, high-voltage level charging systems and fuel cell electric vehicles. Therefore, it is greatly important to carry out research on high voltage gain DC/DC converters. To improve the efficiency of high voltage gain DC/DC converters and solve the problems of output voltage ripple and robustness, this paper proposes a double-boost DC/DC converter. Based on the small-signal model of the proposed converter, a double closed-loop controller with voltage–current feedback and input voltage feedforward is designed. The experimental results show that the maximum efficiency of the proposed converter exceeds 95%, and the output voltage ripple factor is 0.01. Compared with the traditional boost converter and multi-phase interleaved DC/DC converter, the proposed topology has certain advantages in terms of voltage gain, device stress, number of devices, and application of control algorithms.


2019 ◽  
Vol 4 (1) ◽  
pp. 31-38
Author(s):  
Bowo Eko Cahyono ◽  
Muhammad Syukron Ali ◽  
Supriyadi Supriyadi

Transformator is an electrical device that uses a principle of solenoid wrapped in kern, and there are usually two or more coils. Each coil of the taranformator is electromagnetically connected. The transformator is made to fulfill the specific level of voltage required in the devices or systems that use alternating current electrical energy. For example, transformator tap change is design to have different number of primary turns to produce a fixed output voltage, in term there is a changing in the input voltage. This research tries to analyze the effect of the length of primary coil difference of transformator to the voltage resulted in the secondary coil. The objective of the study is producing a relationship of primary coil length variation to the resulting voltage. Variation of coil length is made from 1 cm to 15 cm with interval of 1 cm coil length. The length of the secondary coil is also varied imto 3 cm, 6 cm, and 9 cm. The test is performed by providing the same input voltage at each variation of the primary coil length and then measure the output voltage. The results show that the longer primary coil will produce the smaller output voltage in the secondary coil of tranformator. Based on the resulted graph, the relationship of the length variant of primary coil is linear to the voltage measured in the secondary coil.with determination coefficient (R2) of  0.9603, 0.9775, and 0.9822 respectively forlength of  3 cm, 6 cm, and 9 cm of the secondary coil.


2019 ◽  
Vol 29 (01) ◽  
pp. 2050013
Author(s):  
Najmeh Cheraghi Shirazi ◽  
Abumoslem Jannesari ◽  
Pooya Torkzadeh

A new self-start-up switched-capacitor charge pump is proposed for low-power, low-voltage and battery-less implantable applications. To minimize output voltage ripple and improve transient response, interleaving regulation technique is applied to a multi-stage Cross-Coupled Charge Pump (CCCP) circuit. It splits the power flow in a time-sequenced manner. Three cases of study are designed and investigated with body-biasing technique by auxiliary transistors: Four-stage Two-Branch CCCP (TBCCCP), the two-cell four-stage Interleaved Two-Branch CCCP (ITBCCCP2) and four-cell four-stage Interleaved Two-Branch CCCP (ITBCCCP4). Multi-phase nonoverlap clock generator circuit with body-biasing technique is also proposed which can operate at voltages as low as CCCP circuits. The proposed circuits are designed with input voltage as low as 300 to 400[Formula: see text]mV and 20[Formula: see text]MHz clock frequency for 1[Formula: see text]pF load capacitance. Among the three designs, ITBCCCP4 has the lowest ramp-up time (41.6% faster), output voltage ripple (29% less) and power consumption (19% less). The Figure-Of-Merit (FOM) of ITBCCCP4 is the highest value among two others. For 400[Formula: see text]mV input voltage, ITBCCCP4 has a 98.3% pumping efficiency within 11.6[Formula: see text][Formula: see text]s, while having a maximum voltage ripple of 0.1% and a power consumption as low as 2.7[Formula: see text]nW. The FOM is 0.66 for this circuit. The designed circuits are implemented in 180-nm standard CMOS technology with an effective chip area of [Formula: see text][Formula: see text][Formula: see text]m for TBCCCP, [Formula: see text][Formula: see text][Formula: see text]m for ITBCCCP2 and [Formula: see text][Formula: see text][Formula: see text]m for ITBCCCP4.


Author(s):  
Simone Leeuw ◽  
◽  
Viranjay M. Srivastava

The traditional buck regulator provides the steady output voltage with high efficiency and low power dissipation. Various parameters of this regulator can be improved by the placement of Double-Gate (DG) MOSFET. The double-gate MOSFET provides twice the drain current flow, which improves the various parameters of buck regulator structure and inevitably increases the device performance and efficiency. In this research work, these parameters have been analyzed with implemented DG MOSFET buck regulator and realized the total losses 42.676 mW and efficiency 74.208%. This research work has designed a DG MOSFET based buck regulator with the specification of input voltage 12 V, output voltage 3.3 V, maximum output current 40 mA, switching frequency 100 kHz, ripple current of 10%, and ripple voltage of 1%.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4809
Author(s):  
Yajun Lin ◽  
Jianxin Yang ◽  
Tin-Wai Mui ◽  
Yong Zhou ◽  
Ka-Nang Leung

This work proposes a piecewise modeling of output-voltage ripple for linear charge pumps. The proposed modeling can obtain a more accurate design expression of power-conversion efficiency. The relationship between flying and output capacitance, as well as switching frequency and optimize power-conversion efficiency can be calculated. The proposed modeling is applied to three charge-pump circuits: 1-stage linear charge pump, dual-branch 1-stage linear charge pump and 4× cross-coupled charge pump. Circuit-level simulation is used to verify the accuracy of proposed modeling.


Author(s):  
Mohamed Salem ◽  
Awang Jusoh ◽  
N.Rumzi N. Idris ◽  
Tole Sutikno ◽  
Iftikhar Abid

This paper presents a study on a new full bridge series resonant converter (SRC) with wide zero voltage switching (ZVS) range, and higher output voltage. The high frequency transformer is connected in series with the LC series resonant tank. The tank inductance is therefore increased; all switches having the ability to turn on at ZVS, with lower switching frequency than the LC tank resonant frequency. Moreover, the step-up high frequency (HF) transformer design steps are introduced in order to increase the output voltage to overcome the gain limitation of the conventional SRC. Compared to the conventional SRC, the proposed converter has higher energy conversion, able to increase the ZVS range by 36%, and provide much higher output power. Finally, the a laboratory prototypes of the both converters with the same resonant tank parameters and input voltage are examined based on 1 and 2.2 kW power respectively, for veryfing  the reliability of the performance and the operation principles of both converters.


Sign in / Sign up

Export Citation Format

Share Document