scholarly journals Structural Control Using LRB in Irregular Building

Author(s):  
Aamir A. Mansuri ◽  
Vishal B. Patel ◽  
Chetan Machhi

Earthquakes are measure as one of all nature’s greatest hazards; throughout the historic time they need to cause important loss of life and severe harm to property, particularly to man-made structures. On the opposite hand, earthquakes offer architects and engineers a variety of vital criteria foreign to the traditional style method. during this analysis paper study, base isolation as an associate degree earthquake resisting style technique was used that well dissociate a construction from its substructure and increase flexibility resisting on the bottom vibration areas by providing the isolators. Lead rubber bearing (LRB) isolator could be a passive structural vibration management technique. during this analysis study, unstable behavior of irregularity building in the simple model, re-entrant corner plan irregular model, mass irregular model, and stiffness irregular model are measure configurations with varied frame sections with and while not LRB base isolation was analyzed for the comparative analysis on the idea of base shear, storey shear, stoery displacement, storey drift and storey acceleration with 3 earthquake information, first is Bhuj earthquake, second is Kobe Japan earthquake, and third is Loma Prieta earthquake analysis is done by E-TABS 18.0.20software. Non-linear time history analysis and for design purpose of a base-isolated system and for seismic design of isolated structure consistent with IS 1893 (part 1):2016 and UBC 1997.

In the fast-paced contemporary world, new inventions with rapid construction techniques came across usually built to resist the lateral forces. Among them, the demand for tall buildings has put a revolutionary impact on society. In this study, base isolation as an earthquake resisting design technique was utilized which substantially dissociate a superstructure from its substructure and increase flexibility resisting on the ground vibration areas by providing the different types of base isolators. Lead rubber bearing (LRB) isolator is a passive structural vibration control technique. In this research study, seismic behaviour of tube in tube system steel tall building in square, circular, hexagonal, and octagonal plan configurations with varying frame sections with and without LRB base isolation was analyzed for the comparative analysis on the basis of base shear, overturning moment, time period, storey displacement, storey drift and storey acceleration according to IS 1893 (part 1):2016 and UBC 1997 Earthquake code in E-TABS software by non-linear time history analysis. From the results, Octagonal shape was found to be the best option for tall buildings whereas the hexagonal shaped building showed poor performance during an earthquake.


2016 ◽  
Vol 846 ◽  
pp. 114-119
Author(s):  
Arati Pokhrel ◽  
Jian Chun Li ◽  
Yan Cheng Li ◽  
Nicos Maksis ◽  
Yang Yu

Due to the fact that safety is the major concern for civil structures in a seismic active zone, it has always been a challenge for structural engineers to protect structures from earthquake. During past several decades base isolation technique has become more and more popular in the field of seismic protection which can be adopted for new structures as well as the retrofit of existing structures. The objective of this study is to evaluate the behaviours of the building with different seismic isolation systems in terms of roof acceleration, elastic base shear and inter-storey drift under four benchmark earthquakes, namely, El Centro, Northridge, Hachinohe and Kobe earthquakes. Firstly, the design of base isolation systems, i.e. lead rubber bearing (LRB) and friction pendulum bearing (FPB) for five storey RC building was introduced in detail. The non-linear time history analysis was performed in order to determine the structural responses whereas Bouc-Wen Model of hysteresis was adopted for modelling the bilinear behaviour of the bearings. Both isolation systems increase the fundamental period of structures and reduces the spectral acceleration, and hence reduces the lateral force cause by earthquake in the structures, resulting in significant improvement in building performance; however the Lead Rubber Bearing provided the best reduction in elastic base shear and inter-storey drift (at first floor) for most of the benchmark earthquakes. For the adopted bearing characteristics, FPB provided the low isolator displacement.


10.29007/pvzx ◽  
2018 ◽  
Author(s):  
Kishan Bhojani ◽  
Vishal Patel ◽  
Snehal Mevada

During the life span of structure there may be an effect of vibration. Due to vibration there may be major or minor damage in building. Base isolation is best method to reduce the seismic response of the structure. This paper gives idea about base isolation system which can be used in multi-story building to reduce seismic response of the structure. This paper represents the initialize study of dynamic parameter like effective damping for four earthquake time history. In this paper the optimum effective damping has been found out under the effect of Loma Prieta earthquake time history. The parametric study has been conducted to evaluate the effect on maximum displacement, maximum acceleration, maximum base shear in bare frame and frame with isolator.


2012 ◽  
Vol 204-208 ◽  
pp. 2634-2640
Author(s):  
Dong Zhou Xia

As is known, base isolation can reduce earthquake energy that transferred from the ground motion to the structure by buffering it with a bearing layer at the foundation which has relatively low horizontal stiffness. The paper investigates the time history records of a two storied symmetrical steel framed isolated building with Elastomeric Rubber Bearing and Friction Pendulum Systems that under the Northridge earthquake, and the isolator parameters are calculated using the design guidelines of International Building Code (IBC2000) within the spirit of IS 1893–2002(7). And then, contrasting of the roof’s displacements, accelerations and base shear values of the steel framed building with and without isolators, and which studied from the Non-linear time history analysis using structural analysis software SAP2000. The results show that base isolation will provide a substitute technology for the conventional, fixed-base design of structures and cost-effective for new buildings in high seismic regions.


2021 ◽  
Vol 309 ◽  
pp. 01137
Author(s):  
Vamshisheela Siripuram ◽  
Atulkumar Manchalwar

In the present paper an investigation is carried out to evaluate the efficiency of Base Isolation device in a building subjected to both seismic and blast induced ground motions. A 5-story building is modelled with different story stiffness and floor masses is considered in this study. In SAP 2000 software two buildings, one with fixed base and the other with isolated base are designed and nonlinear time history analysis is conducted. The structural responses of these two models subjected to four recorded earthquakes and four different blast ground accelerations is compared in this study. The base isolated device such as lead/rubber bearing have proved to be effective in reducing the base Shear and Top story acceleration, and also increase in Hysteresis energy in the base isolated structure subjected to seismic and blast vibrations.


2021 ◽  
Vol 309 ◽  
pp. 01134
Author(s):  
Boda Balaraju ◽  
Atulkumar Manchalwar

In this present study aims to evaluate the performance of base isolation device under different intensity blast induced ground excitations for an elevated water tank staging. In this study mainly focused to improve the performance of the base isolator and minimize the damage of the structure. To know the performance of base isolator two models are considered one is fixed base model and another one is supported with base isolator model for both non-linear time history analysis is carried out with the help of SAP 2000 software subjected to four different underground blast intensities. From the analysis, it is observed that by using base isolator supported model structural responsive parameters such as base shear, top storey accelerations are efficiently reduced when compared to the fixed base structure. Hence it is proved that adopting base isolation technique we considerably reduce the damage of the structure subjected to underground blast vibrations.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 197
Author(s):  
Adamo Zinco ◽  
Fernando Fraternali ◽  
Gianmario Benzoni ◽  
Enzo Martinelli

Although base isolation is nowadays a well-established seismic-protection technique for both buildings and bridges, and several issues are still open and attract the interest of the research community. Among them, the formulation of computationally efficient and accurate analysis methods is a relevant aspect in structural design of seismic-isolated buildings. In fact, codes and guidelines currently in force in various parts of the world generally include the possibility for designers to utilize linear-elastic analysis methods based on equivalent linearization of the non-linear force-displacement response of isolators. This paper proposes a formula for defining the force distribution in height that should be considered in linear-static analyses to obtain a more accurate approximation of the actual structural response, supposedly simulated by means of non-linear time history analysis. To do that, it summarizes the results of a wide parametric analysis carried out on a batch of structures characterized by three different heights and various properties of base isolators. The reported results highlight that the equivalent static force distribution provided by both Italian and European codes tend to underestimate the actual seismic lateral forces acting on base-isolated buildings, whereas the inverted triangular distribution, proposed in various American codes and standards, is often conservative.


2021 ◽  
Vol 11 (8) ◽  
pp. 3425
Author(s):  
Marco Zucca ◽  
Nicola Longarini ◽  
Marco Simoncelli ◽  
Aly Mousaad Aly

The paper presents a proposed framework to optimize the tuned mass damper (TMD) design, useful for seismic improvement of slender masonry structures. A historical masonry chimney located in northern Italy was considered to illustrate the proposed TMD design procedure and to evaluate the seismic performance of the system. The optimization process was subdivided into two fundamental phases. In the first phase, the main TMD parameters were defined starting from the dynamic behavior of the chimney by finite element modeling (FEM). A series of linear time-history analyses were carried out to point out the structural improvements in terms of top displacement, base shear, and bending moment. In the second phase, masonry's nonlinear behavior was considered, and a fiber model of the chimney was implemented. Pushover analyses were performed to obtain the capacity curve of the structure and to evaluate the performance of the TMD. The results of the linear and nonlinear analysis reveal the effectiveness of the proposed TMD design procedure for slender masonry structures.


Author(s):  
Iswandi Imran ◽  
Marie Hamidah ◽  
Tri Suryadi ◽  
Hasan Al-Harris ◽  
Syamsul Hidayat

<p>In order to overcome stringent seismic requirement in the new Greater Jakarta Light Rail Transit Project, a breakthrough seismic system shall be chosen to obtain expected structural performance. This seismic system shall be designed to provide operational performance level after strong earthquake events. To achieve the criteria, seismic isolation system using Lead Rubber Bearings is chosen. With this isolation system, Greater Jakarta LRT has become the first seismically isolated infrastructure and apparently an infrastructure with the largest numbers of LRBs in one single project in Indonesia. More than 10.400 Pcs LRBs are used for the first phase of the construction and the numbers will be certainly increased in the next phase of the construction. To evaluate the structural performance, non-linear time history analysis is used. A total of 3 pair matched ground motions will be used as the input for the response history analysis. The ability of the lead rubber bearing to isolate and dissipate earthquake actions will determine its structural performance level. This will be represented by the nonlinear hysteretic curves obtained throughout the earthquake actions.</p>


Author(s):  
Ali Ruzi Özuygur

Seismic base isolation has been successfully used to protect structural and nonstructural components from the damaging effects of earthquakes by reducing floor accelerations and inter-story drifts for decades. The level of floor acceleration is a key issue in the protection of acceleration-sensitive nonstructural components. In this paper, floor acceleration performance of seismically isolated buildings with different lateral load resisting systems such as moment resisting frame, dual system, moment resisting frame plus viscous wall dampers and dual system plus viscous wall dampers is investigated. Moreover, the effectiveness of supplemental viscous damping devices equipped in parallel with lead-rubber isolators is studied. It is inferred from the study that the most effective way of reducing floor accelerations is to provide more rigidity to the superstructure. Utilizing supplemental viscous dampers along with lead-rubber isolators having about 20% of effective damping ratio is meaningless or harmful in relation to floor acceleration and base shear.


Sign in / Sign up

Export Citation Format

Share Document