scholarly journals DIGITAL TWINS: COMBINED SURVEYING PRAXIS FOR MODELLING

Author(s):  
CECILIA MARIA BOLOGNESI ◽  
Martina Signorini

While the construction sector embraces the digitalization, new technologies are spreading and are generating benefits. The need of creating a 3D model of the reality, in particular of the built asset, is not new. The Building Information Modelling, a process that gives a great contribution in improving project quality, reducing errors, avoiding uncertainties and enhancing collaboration, allows a virtual representation of the existing asset enriching its geometry with precious and significant information related to its properties. Despite BIM benefits, BIM models do not take into account the real-time component and do not report the real-time behaviour of the building. Digital twin, the virtual copy of an object, instead creates a real-time virtual twin of the physical asset considering this ingredient and reproducing how the building behaves. The paper starts right from the investigation of the Digital Twin concepts and its main features and proceeds with an analysis of several technologies and instruments exploited till now for the surveying and positioning of existing buildings. In addition, a new toolkit based on AR and coupled with sensors and visualisation tool developed by xxx, an ongoing H2020 project, is presented to show its main advantages when it comes to representing the virtual copy of an existing building.

Author(s):  
Joern Kraft ◽  
Stefan Kuntzagk

Engine operating cost is a major contributor to the direct operating cost of aircraft. Therefore, the minimization of engine operating cost per flight-hour is a key aspect for airlines to operate successfully under challenging market conditions. The interaction between maintenance cost, operating cost, asset value, lease and replacement cost describes the area of conflict in which engine fleets can be optimized. State-of-the-art fleet management is based on advanced diagnostic and prognostic methods on engine and component level to provide optimized long-term removal and work-scoping forecasts on fleet level based on the individual operation. The key element of these methods is a digital twin of the active engines consisting of multilevel models of the engine and its components. This digital twin can be used to support deterioration and failure analysis, predict life consumption of critical parts and relate the specific operation of a customer to the real and expected condition of the engines on-wing and at induction to the shop. The fleet management data is constantly updated based on operational data sent from the engines as well as line maintenance and shop data. The approach is illustrated along the real application on the CFM56-5C, a mature commercial two-spool high bypass engine installed on the Airbus A340-300. It can be shown, that the new methodology results in major improvements on the considered fleets.


2021 ◽  
Author(s):  
Zhongyu Zhang ◽  
Zhenjie Zhu ◽  
Jinsheng Zhang ◽  
Jingkun Wang

Abstract With the drastic development of the globally advanced manufacturing industry, transition of the original production pattern from traditional industries to advanced intelligence is completed with the least delay possible, which are still facing new challenges. Because the timeliness, stability and reliability of them is significantly restricted due to lack of the real-time communication. Therefore, an intelligent workshop manufacturing system model framework based on digital twin is proposed in this paper, driving the deep inform integration among the physical entity, data collection, and information decision-making. The conceptual and obscure of the traditional digital twin is refined, optimized, and upgraded on the basis of the four-dimension collaborative model thinking. A refined nine-layer intelligent digital twin model framework is established. Firstly, the physical evaluation is refined into entity layer, auxiliary layer and interface layer, scientifically managing the physical resources as well as the operation and maintenance of the instrument, and coordinating the overall system. Secondly, dividing the data evaluation into the data layer and the processing layer can greatly improve the flexible response-ability and ensure the synchronization of the real-time data. Finally, the system evaluation is subdivided into information layer, algorithm layer, scheduling layer, and functional layer, developing flexible manufacturing plan more reasonably, shortening production cycle, and reducing logistics cost. Simultaneously, combining SLP and artificial bee colony are applied to investigate the production system optimization of the textile workshop. The results indicate that the production efficiency of the optimized production system is increased by 34.46%.


2021 ◽  
Vol 343 ◽  
pp. 03005
Author(s):  
Florina Chiscop ◽  
Bogdan Necula ◽  
Carmen Cristiana Cazacu ◽  
Cristian Eugen Stoica

The topic of this paper represents our research in the process of creating a virtual model (digital twin) for a fast-food company production chain starting with the moment when a customer launches an order, following with the processing of that order, until the customer receives it. The model will describe elements that are included in this process such as equipment, human resources and the necessary space that is needed to host this layout. The virtual model created in a simulation platform will be a replicate of a real fast-food company, thus helping us observe the real time dynamic of this production system. Using WITNESS HORIZON 23 we will construct the model of the layout based on real time data received from the fast-food company. This digital twin will be used to manage the production chain material flow, evaluating the performance of the system architecture in various scenarios. In order to obtain a diagnosis of the system’s performance we will simulate the workflow running through preliminary architecture in compliance with the real time behaviour to identify the bottlenecks and blockages in the flow trajectory. In the end we will propose two different optimised architectures for the fast-food company production chain.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 537 ◽  
Author(s):  
Rafael M. Soares ◽  
Maurício M. Câmara ◽  
Thiago Feital ◽  
José Carlos Pinto

Digital twins are rigorous mathematical models that can be used to represent the operation of real systems. This connection allows for deeper understanding of the actual states of the analyzed system through estimation of variables that are difficult to measure otherwise. In this context, the present manuscript describes the successful implementation of a digital twin to represent a four-stage multi-effect evaporation train from an industrial sugar-cane processing unit. Particularly, the complex phenomenological effects, including the coupling between thermodynamic and fluid dynamic effects, and the low level of instrumentation in the plant constitute major challenges for adequate process operation. For this reason, dynamic mass and energy balances were developed, implemented and validated with actual industrial data, in order to provide process information for decision-making in real time. For example, the digital twin was able to indicate failure of process sensors and to provide estimates for the affected variables in real time, improving the robustness of the operation and constituting an important tool for process monitoring.


Author(s):  
Jonathan M. Eyre ◽  
Tony J. Dodd ◽  
Chris Freeman ◽  
Richard Lanyon-Hogg ◽  
Aiden J. Lockwood ◽  
...  

Digital twins have received a large amount of exposure around what they can offer to industry generating lots of noise, however there are few demonstrations utilizing published architectural frameworks. This has been addressed by investigating industrial publications and reports on what is the minimum essential requirements to form a digital twin and additional desirable features. From this, a generic industrial architectural framework of a digital twin has been established to utilize real-time information from a physical asset forming a monitoring digital twin. This has been expanded to incorporate a Discrete Event Simulation (DES) to form a process digital twin utilizing structured information about the process. The framework, including the DES extension, has been validated on a reconfigurable fixture utilizing an established process that has been modelled using Siemens Plant Simulation. This result forms the start of a feedback loop presenting additional value transforming a monitoring digital twin into a process digital twin. This provides a solid foundation for discussion within the industrial community about defining the core functionality required for digital twins.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8194
Author(s):  
Mehdi Kherbache ◽  
Moufida Maimour ◽  
Eric Rondeau

The Industrial Internet of Things (IIoT) is known to be a complex system because of its severe constraints as it controls critical applications. It is difficult to manage such networks and keep control of all the variables impacting their operation during their whole lifecycle. Meanwhile, Digital Twinning technology has been increasingly used to optimize the performances of industrial systems and has been ranked as one of the top ten most promising technological trends in the next decade. Many Digital Twins of industrial systems exist nowadays but only few are destined to networks. In this paper, we propose a holistic digital twinning architecture for the IIoT where the network is integrated along with the other industrial components of the system. To do so, the concept of Network Digital Twin is introduced. The main motivation is to permit a closed-loop network management across the whole network lifecycle, from the design to the service phase. Our architecture leverages the Software Defined Networking (SDN) paradigm as an expression of network softwarization. Mainly, the SDN controller allows for setting up the connection between each Digital Twin of the industrial system and its physical counterpart. We validate the feasibility of the proposed architecture in the process of choosing the most suitable communication mechanism that satisfies the real-time requirements of a Flexible Production System.


Author(s):  
Jens Ducrée

Since its inception in the late 2000s, blockchain has emerged as a powerful tool for creating trust without intermediaries to incentivize global communities for working for a common goal, such as the improvement of its very ecosystem, its applications and community adoption. While first blockchains were mainly devised for confirming transactions of their innate cryptocurrencies like Bitcoin, smart-contract blockchains like Ethereum can interface with the real-world through so-called “oracles”, which feed trustful off-chain information. This paper introduces digital twins of physical objects and processes as computational oracles to effectively unleash the tremendous opportunity offered by blockchain to the realm of fundamental science, research and technology development (RTD). The crowdsourcing concept is illustrated with the example of centrifugal flow control in microfluidic “Lab-on-a-Disc” (LoaD) systems.


2021 ◽  
Author(s):  
Mairi Kerin ◽  
Duc Truong Pham ◽  
Jun Huang ◽  
Jeremy Hadall

Abstract A digital twin is a “live” virtual replica of a sensorised component, product, process, human, or system. It accurately copies the entity being modelled by capturing information in real time or near real time from the entity through embedded sensors and the Internet-of-Things. Many applications of digital twins in manufacturing industry have been investigated. This article focuses on the development of product digital twins to reduce the impact of quantity, quality, and demand uncertainties in remanufacturing. Starting from issues specific to remanufacturing, the article derives the functional requirements for a product digital twin for remanufacturing and proposes a UML model of a generic asset to be remanufactured. The model has been demonstrated in a case study which highlights the need to translate existing knowledge and data into an integrated system to realise a product digital twin, capable of supporting remanufacturing process planning.


Author(s):  
S. Shaharuddin ◽  
K. N. Abdul Maulud ◽  
S. A. F. Syed Abdul Rahman ◽  
A. I. Che Ani

Abstract. Technology has advanced and progressed tremendously, and the term city is being elevated to a new level where the smart city has been introduced globally. Recent developments in the concept of smart city have led to a renewed interest in Digital Twin. Using precise Building Information Modelling (BIM) consolidated with big data and sensors, several attempts have been made to establish digital twin smart cities. In recent years, several researchers have sought to determine the capability of smart city and digital twin for various taxonomies such as development and urban planning purposes, built environment, manufacturing, environmental, disaster management, and healthcare. Despite being beneficial in many disciplines, especially in manufacturing, built environment, and urban planning, these existing studies have shown a lack of aspect in terms of emergency or disaster-related as opposed to the elements mentioned above. This is because the researcher has not treated emergencies or disasters in much detail. Therefore, an extensive review on smart city, digital twin, BIM and disaster management and technology that revolves around these terms were summarised. In general, 39 articles from prominent multidisciplinary databases were retrieved over the last two decades based on the suggested PRISMA workflow. These final articles were analysed and categorised into four themes based on the research content, gist, and keywords. Based on the review of 39 articles related to smart city, digital twin and BIM, a workflow for the smart city digital twin and the conceptual framework for indoor disaster management was proposed accordingly. The establishment of smart city digital twins solely for an indoor emergency can be beneficial to urbanites, and it could provide numerous benefits for enhanced situation assessment, decision making, coordination, and resource allocation.


2021 ◽  
pp. 1-28
Author(s):  
Shuo Wang ◽  
Xiaonan Lai ◽  
Xiwang He ◽  
Yiming Qiu ◽  
Xueguan Song

Abstract Digital twin has the potential for increasing production, achieving real-time monitor, and realizing predictive maintenance by establishing a real-time high-fidelity mapping between the physical entity and its digital model. However, the high accuracy and instantaneousness requirements of digital twins have hindered their applications in practical engineering. This paper presents a universal framework to fulfill the requirements and to build an accurate and trustworthy digital twin by integrating numerical simulations, sensor data, multi-fidelity surrogate (MFS) models, and visualization techniques. In practical engineering, the number of sensors available to measure quantities of interest is often limited, complementary simulations are necessary to compute these quantities. The simulation results are generally more comprehensive but not as accurate as the sensor data. Therefore, the proposed framework combines the benefits of both simulation results and sensor data by using an MFS model based on moving least squares, named MFS-MLS. The MFS-MLS was developed as an essential part to calibrate the continuous field of the simulation by limited sensor data to obtain accurate results for the digital twin. Then single-fidelity surrogate models are built on the whole domain using the calibrated results of the MFS-MLS as training samples and sensor data as inputs to predict and visualize the quantities of interest in real-time. In addition, the framework was validated by a truss test case, and the results demonstrate that the proposed framework has the potential to be an effective tool to build accurate and trustworthy digital twins.


Sign in / Sign up

Export Citation Format

Share Document