scholarly journals An experimental study of composite effect on the behaviour of beam-column joints subjected to impact load

Author(s):  
Kang Hai Tan ◽  
Kang Chen

This paper presents an experimental study on structural behaviour of composite beam-column joints under a middle column removal scenario. Specimens were subjected to impact loads from an MTS drop-weight testing machine. Two joints with welded unreinforced beam flange and bolted web connections were designed per AISC 360-10. One of the beam-column joints had a thicker composite slab. The joints were restrained by pinned supports at two beam ends, which were connected to rigid A-frames to represent boundary conditions from adjacent structures. Test results indicated that the composite slab significantly affected the impact force due to an increase of inertia. However, other structural responses (especially displacement of the middle column) decreased due to increase of stiffness contributed by the thicker composite slab. The finding was that increasing thickness of composite slab can increase the resistance of composite joint significantly due to increased composite effect. More experimental studies were conducted to investigate other types of joints.

2021 ◽  
Vol 58 (4) ◽  
pp. 55-68
Author(s):  
F. Capligins ◽  
A. Litvinenko ◽  
A. Aboltins ◽  
E. Austrums ◽  
A. Rusins ◽  
...  

Abstract The paper presents a study of the chaotic jerk circuit (CJC) employment capabilities for digital communications. The concept of coherent chaos shift keying (CSK) communication system with controlled error feedback chaotic synchronization is proposed for a specific CJC in two modifications. The stability of chaotic synchronization between the two CJCs was evaluated in terms of voltage drop at the input of the slave circuit and the impact of channel noise using simulations and experimental studies.


2012 ◽  
Vol 15 (1) ◽  
Author(s):  
Simone de Rocio Senger de Souza ◽  
Marllos Paiva Prado ◽  
Ellen Francine Barbosa ◽  
José Carlos Maldonado

Several techniques and criteria are available to help conducting testing activity. The choice for one of them depends on different aspects, such as the time restrictions, ef- fectiveness of the testing criteria or the features of the program under test. In this context, the programming paradigm might influence in the testing activity cost. This paper presents the results of an experimental study to characterize and evaluate the cost and strength of structural and functional testing criteria, comparing object-oriented and procedural programming paradigms. A set of 32 programs from the data structure do- main was considered in this study. The main goals in the execution of this research were: i) to obtain initial results about the investigated questions; ii) to generate artifacts which can be used as basis to define and conduct further experimental studies; iii) to support training and teaching of software testing activity.


2012 ◽  
Vol 479-481 ◽  
pp. 1145-1150
Author(s):  
Xiao Feng Xu ◽  
Wen Bin Yao ◽  
Jiu Hua Xu ◽  
Wei Zhang

In order to get the physical mechanics of gingko,hickory nut and their stalks, microprocessor controlled electronic universal testing machine (WDW-5E) was used to study the basic physical characteristics,pulling resistance and cutting resistance of their stalk in different harvest time and moisture contents. The impact of physical mechanics of cones and stalks on the picking process were analyzed and some concrete suggestions were put forward in the paper. This experimental study provides an important theory basis on designing and manufacturing different cones picking machine.


Author(s):  
A. Tyas ◽  
Z. Ozdemir

Elastic theory shows that wide spectrum signals in the Hopkinson pressure bar suffer two forms of distortion as they propagate from the loaded bar face. These must be accounted for if accurate determination of the impact load is to be possible. The first form of distortion is the well-known phase velocity dispersion effect. The second form, which can be equally deleterious, is the prediction that at high frequencies, the stress and strain generated in the bar varies with radial position on the cross section, even for a uniformly applied loading. We consider the consequences of these effects on our ability to conduct accurate backward dispersion correction of bar signals, that is, to derive the impact face load from the dispersed signal recorded at some other point on the bar. We conclude that there is an upper limit on the frequency for which the distortion effects can be accurately compensated, and that this can significantly affect the accuracy of experimental results. We propose a combination of experimental studies and detailed numerical modelling of the impact event and wave propagation along the bar to gain better understanding of the frequency content of the impact event, and help assess the accuracy of experimental predictions of impact face load.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lesia Pavliukh ◽  
Sergii Shamanskyi ◽  
Sergii Boichenko ◽  
Artur Jaworski

Purpose This paper aims to evaluate of the microalgae potential for commercial application, in particular to conduct experimental study of biogenic compounds removal from sewage waters by microalgae, and to calculate economical benefits from biofertizers and biofuel production. Design/methodology/approach Experimental study in the concentration change of nitrogen and phosphorus compounds in the cultivation of Chlorella Vulgaris microalgae in various types of sewage water was carried out. Findings The efficiency wastewater treatment by microalgae was confirmed. The economic benefit from the biomass utilization as biofuel production was calculated. Practical implications Implementation of wastewater treatment technology with biomass recycling for biofuel and biofertilizers production will minimize the impact on the environment. Originality/value As a results of experimental studies, the ability of microalgae to reduce biogenic elements in wastewater was confirmed. Microalgae can be used both for wastewater treatment to biogenic elements removal, such as phosphorous and nitrogen compounds, and biofuel, biofertilizers production. Prospects of the commercial use of microalgae are obvious. They are specially adapted to an environment dominated by viscous forces.


2016 ◽  
Vol 715 ◽  
pp. 107-110
Author(s):  
Kyohei Takeo ◽  
Taichi Nogami ◽  
Tadaharu Adachi ◽  
Ryohei Koretoh ◽  
Hitoshi Tada

Recently, Thin Foam Films are Applied to Cushion Materials on Various Instruments, such as Mobile Phones, Tablet Computers, Etc. because of Reducing Load due to Drop Impact or Collision. Testing Methods of the Thin Films must Be Established to Estimate Effect of Thin Films on Reduction of the Impact Load. in this Research, Impact Reduction Effect of the Acrylic Foam Film with a Thickness below 1000μm was Clarified by Developing a Falling Weight Testing Machine. Maximum Value of the Impact Load Decreased Dominantly and the Plateau Region was Longer as the Thickness Increased. the Duration of the Load was Longer for the Thicker Film. Therefore, the Thin Acrylic Foam Films were Found to Be Effective in the Reduction of the Large Impact Load over 20 Kn.


2008 ◽  
Vol 13-14 ◽  
pp. 195-201 ◽  
Author(s):  
Takashi Yokoyama ◽  
Kenji Nakai

The impact compressive failure behaviour of a unidirectional T700/2521 carbon/epoxy composite in three principal material directions is investigated in the conventional split Hopkinson pressure bar. Two different types of specimens with square cross sections are machined from the composite in the plane of the laminate. The uniaxial compressive stress-strain curves up to failure at quasi-static and intermediate strain rates are measured on an Instron testing machine. It is demonstrated that the ultimate compressive strength (or maximum stress) increases slightly, while the ultimate compressive strain (or failure strain) decreases marginally with strain rate in the range of 10-3 to 103/s in all three directions. Dominant failure mechanisms are found to significantly vary with strain rate and loading directions along three principal material axes.


2021 ◽  
Vol 124 ◽  
pp. 105336 ◽  
Author(s):  
Gang Luo ◽  
Ziming Xu ◽  
Haitao Shen ◽  
Wei Chen ◽  
Haiyang Zhang

2007 ◽  
Vol 348-349 ◽  
pp. 953-956
Author(s):  
Chiara Colombo ◽  
Laura Vergani ◽  
Nino Ascone Modica

Aim of this paper is to study the impact between the sailing boat keel and the ground and to look for the optimal configuration of the bulb-keel-hull system able to direct the damage in the bulb-keel zone avoiding the hull region. The research, which is carried out in collaboration with Wally shipyard, requires firstly an accurate investigation of the bulb-keel-hull system geometry, of the boat inertial properties and of the impact condition. Secondly, a numerical dynamic analysis by means of the finite element method allows to model the impact and to determine how, during the collision, the state of stress varies and how the kinetic energy is absorbed/dissipated. Starting from these results, the performance of the present configuration is evaluated in several conditions and some proposals for new design configuration are made. In particular the results carried out from the new design analyses were evaluated comparing themselves to results obtained from experimental studies.


2018 ◽  
Vol 275 ◽  
pp. 113-123
Author(s):  
Barbara Grzegorczyk

The purpose of this paper is to determine the influence of temperature of plastic deformation on the structure and mechanical properties of copper alloys of the types CuCo1NiBe (CCNB), CuCo2Be (CB4), CuNi2SiCr (CNCS), CuNi1P (CNP) and CuCr1Zr (CW106C) applied on electrodesduring a tensile test. Tensile tests were carried out on polycrystalline samples of above mentioned alloys, which confirmed the presence of inhomogeneous plastic deformation in specified temperature ranges for each alloy. The tensile test of the investigated copper alloys were realized in the temperature range of 20÷800 °C with strain rate of 1.2•10-3s–1 on the universal testing machine. Metallographic observations of the structure were carried out on a light microscope and the fractographic investigation of fracture on an electron scanning microscope. Performed experimental studies have proven that analyzed structural factors, in a range of investigated strain conditions at elevated temperature, significantly influence the phenomenon of the Portevin Le Chatelier (PLC) type instability of plastic strain, revealed in low-alloy copper alloys. Moreover, it was found that the impact of examined factors on the PLC effect should be considered comprehensively, taking into account their synergic interactions.


Sign in / Sign up

Export Citation Format

Share Document