scholarly journals Shear connection requirements for composite cellular beams

Author(s):  
Eleftherios Aggelopoulos ◽  
Francois Hanus ◽  
Mark Lawson

Beams with regular circular web openings (cellular beams) are often used in composite construction. Rules for the minimum degree of shear connection in composite beams are presented in Eurocode 4 but were derived for solid web beams in propped construction. This paper investigates the degree of shear connection requirements for composite cellular beams, focusing on the combined effect of using a steel section with regularly spaced, large circular web openings and unpropped construction conditions. The effect of the diameter and the spacing of the openings is also investigated. In order to provide rules for the minimum degree of shear connection in cellular beams, parametric finite element (FE) analyses were carried out for beams in the span range of 9 to 18 m. The results were calibrated against a 15.3 m span composite cellular beam test with a low degree of shear connection. The proposed minimum degree of shear connection requirements for beams with regular circular web openings are presented for both propped and unpropped construction, and for symmetric and asymmetric steel sections. Comparisons are made with equivalent beams with solid webs (no openings) and it is shown that significant relaxation in the codified minimum degree of shear connection to the current version of Eurocode 4 can be justified for composite cellular beams.  

Bauingenieur ◽  
2016 ◽  
Vol 91 (04) ◽  
pp. 140-151
Author(s):  
Martin Herbrand ◽  
Martin Classen

Die Entwicklung neuartiger Verbundmittel für Stahl-Beton-Verbundkonstruktionen ist aktuell mit einem enormen experimentellen Aufwand verbunden. Zur Herleitung geeigneter Bemessungsmodelle und zulässiger Anwendungsbereiche sind einerseits umfangreiche Versuchsreihen zur Erforschung des lokalen Schubtrag- und Verformungsverhaltens der neuen Verbundmittel erforderlich, andererseits werden kostspielige Trägerversuche zur Untersuchung des globalen Tragverhaltens der neuartigen Verbundmittel im Verbundträger durchgeführt. Hierbei steht insbesondere die Frage nach dem erforderlichen Mindestverdübelungsgrad der neuartigen Verbundmittel im Vordergrund. Am Beispiel des innovativen Pin-Verbundmittels wird im Rahmen dieses Beitrags untersucht, inwiefern validierte Finite-Elemente-Modelle von Verbundträgern, die neben der Schubtragfähigkeit auch das Verformungsvermögen der neuartigen Verbundmittel berücksichtigen, zur Herleitung von Mindestverdübelungsgraden eingesetzt werden können und in welchem Maße diese Modelle zum Ersatz oder Teilersatz von Trägerversuchen geeignet sind. Die hier betrachteten kleinskaligen Pin-Verbundmittel wurden zur Schubsicherung in Verbundstrukturen aus Stahl und sehr dünnen hochfesten Betongurten entwickelt, in denen konventionelle Verbundmittel wie Kopfbolzdübel aufgrund der begrenzten Einbindetiefen nicht eingesetzt werden können. Der Beitrag beschreibt die Entwicklung geeigneter nicht-linearer Finite-Elemente-Modelle von Verbundträgern, die Validierung der Modelle an Versuchen und die Durchführung systematischer Parameterrechnungen zur Herleitung von Mindestverdübelungsgraden bei unterschiedlichen Trägerlängen und Belastungssituationen. Abschließend wird für den untersuchten Verbundquerschnitt mit Pin-Verbundmittel ein Handrechenmodell zur Bestimmung des erforderlichen Mindestverdübelungsgrades in Abhängigkeit von der Trägerlänge angegeben. Die vorgeschlagene FE-Modellierungsform und das methodische Vorgehen zur Herleitung des Mindestverdübelungsgrades sind auf andere Verbundmittel- und Querschnittstypen übertragbar.


1983 ◽  
Vol 10 (4) ◽  
pp. 713-721 ◽  
Author(s):  
R. G. Redwood ◽  
G. Poumbouras

Tests of composite beams comprising a concrete slab supported on a steel deck and a steel wide-flange shape containing large web openings are described. Special attention is directed to the amount of shear connection between slab and steel section in the region of a web hole, and on the effect of construction loads acting on the steel section prior to composite action being effective.It is shown that limited shear connection at the hole will significantly affect the strength when loading produces a high shear-to-moment ratio, and a theory is presented which conservatively takes this into account. The effect of construction loads on unshored construction is shown to be small when these do not exceed 60% of the non-composite beam resistance at the hole.


Author(s):  
Eleftherios Aggelopoulos ◽  
Graham Couchman ◽  
Mark Lawson

Composite floors are often used in building construction where beams typically span from 6 to 18 m. They are commonly used together with decking of 50 to 80 mm depth that spans 3 to 4.5 m between the beams. Rules for the minimum degree of shear connection in composite beams are presented in Eurocode 4 and other international Codes, and were derived for beams in propped construction.Eurocode 4 defines a minimum limit for the degree of shear connection, primarily to ensure that slip at the steel-concrete interface does not exceed a limiting value. This limit is proportionate to the beam span and also depends on the steel strength and the asymmetry of the flange areas of the section. Currently, many designs cannot achieve the codified degree of shear connection demands, since it is not possible to accommodate a sufficient number of shear connectors on the span as dictated by the spacing of the deck ribs. However, there are special cases which are not explicitly accounted for in Codes. This paper aims to investigate the degree of shear connection requirements in such cases, including beams that are unpropped in construction, beams that are not fully utilised in bending because serviceability criteria govern their design and beams that are predominantly loaded by point loads rather than uniform loading.The results from parametric finite element analyses carried out using ANSYS for beams in the span range of 6 to 18 m are presented. The finite element models have been calibrated against composite beam tests. Comparisons are made with the current Eurocode 4 provisions and modifications are proposed where appropriate.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2978
Author(s):  
Zhi-Min Liu ◽  
Xue-Jin Huo ◽  
Guang-Ming Wang ◽  
Wen-Yu Ji

Compared with straight steel–concrete composite beams, curved composite beams exhibit more complicated mechanical behaviors under combined bending and torsion coupling. There are much fewer experimental studies on curved composite beams than those of straight composite beams. This study aimed to investigate the combined bending and torsion behavior of curved composite beams. This paper presents static loading tests of the full elastoplastic process of three curved composite box beams with various central angles and shear connection degrees. The test results showed that the specimens exhibited notable bending and torsion coupling force characteristics under static loading. The curvature and interface shear connection degree significantly affected the force behavior of the curved composite box beams. The specimens with weak shear connection degrees showed obvious interfacial longitudinal slip and transverse slip. Constraint distortion and torsion behavior caused the strain of the inner side of the structure to be higher than the strain of the outer side. The strain of the steel beam webs was approximately linear. In addition, fine finite element models of three curved composite box beams were established. The correctness and applicability of the finite element models were verified by comparing the test results and numerical calculation results for the load–displacement curve, load–rotational angle curve, load–interface slip curve, and cross-sectional strain distribution. Finite element modeling can be used as a reliable numerical tool for the large-scale parameter analysis of the elastic–plastic mechanical behavior of curved composite box beams.


2017 ◽  
Vol 893 ◽  
pp. 380-383
Author(s):  
Jun Xia ◽  
Z. Shen ◽  
Kun Liu

The tapered cross-section beams made of steel-concrete composite material are widely used in engineering constructions and their dynamic behavior is strongly influenced by the type of shear connection jointing the two different materials. The 1D high order finite element model for tapered cross-section steel-concrete composite material beam with interlayer slip was established in this paper. The Numerical results for vibration nature frequencies of the composite beams with two typical boundary conditions were compared with ANSYS using 2D plane stress element. The 1D element is more efficient and economical for the common tapered cross-section steel-concrete composite material beams in engineering.


2019 ◽  
Vol 10 (4) ◽  
pp. 446-467
Author(s):  
Naveed Alam ◽  
Ali Nadjai ◽  
Olivier Vassart ◽  
Francois Hanus

Purpose In recent times, the use of steel sections with web openings has become common as slim floor beams because they offer a reduction in weight of the steelwork, accommodate services within the floor depth and provide the composite action. The composite action in these beams is achieved either through the concrete dowels or through concrete plugs. Though these web openings offer several benefits in slim floor beams, they induce the material discontinuity in the steel web, which may affect their shear capacity and/or thermal behaviour. The purpose of this study is to investigate the thermal behaviour of slim floor beams with web openings in fire. Design/methodology/approach This research presents findings from experimental and analytical investigations conducted to study the thermal behaviour of slim floor beams with web openings in fire. For this purpose, an experimental investigation was conducted, which shows that the presence of web openings has a major influence on temperature development across the steel section as well as along the span of these beams. The behaviour of the tested slim floor beam is validated using finite element modelling. The validated finite element model is then used to conduct a sensitivity study to analyse the influence of different opening spacings, sizes and shapes on the thermal performance of slim floor beams in fire. Findings Test results show that the presence of web openings has a major influence on temperature development across the steel section as well as along the span of these beams. Temperatures on the web below the openings are found to be higher as compared to those recorded on the adjacent solid steel web. It is also observed that temperatures on the steel web above the openings are lesser than those on the adjacent solid steel web. Parametric studies conducted using the verified analytical modelling methods show that different opening spacings, sizes and shapes have a variable impact on the thermal behaviour of slim floor beams in fire. Closely spaced and larger opening sizes were found to have a more severe influence on their thermal behaviour in fire as compared to widely spaced and smaller openings. It was also found that the behaviour of these beams is influenced by the shape of the openings with rectangular openings resulting in more severe thermal distributions as compared to circular openings. Originality/value The findings from this research study are highly valuable as they contribute to the existing knowledge database. There is a lack of experimental and analytical investigation on performance of slim floor beams with web openings at elevated temperatures. The results and conclusions from this study will help in developing innovative designs for slim floor beams and will help in reducing the fire related risk associated with structures comprising of slim floor beams with web openings.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jing Liu ◽  
Fa-xing Ding ◽  
Xue-mei Liu ◽  
Zhi-wu Yu ◽  
Zhe Tan ◽  
...  

This study investigates the flexural strength of simply supported steel-concrete composite beams under hogging moment. A total of 24 composite beams are included in the experiments, and ABAQUS software is used to establish finite element (FE) models that can simulate the mechanical properties of composite beams. In a parametric study, the influences of several major parameters, such as shear connection degree, stud arrangement and diameter, longitudinal and transverse reinforcement ratios, loading manner, and beam length, on flexural strength were investigated. Thereafter, three standards, namely, GB 50017, Eurocode 4, and BS 5950, were used to estimate the flexural strength of the composite beams. These codes were also compared with experimental and numerical results. Results indicate that GB 50017 may provide better estimations than the other two codes.


Sign in / Sign up

Export Citation Format

Share Document