scholarly journals Flexural Capacity of Steel-Concrete Composite Beams under Hogging Moment

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jing Liu ◽  
Fa-xing Ding ◽  
Xue-mei Liu ◽  
Zhi-wu Yu ◽  
Zhe Tan ◽  
...  

This study investigates the flexural strength of simply supported steel-concrete composite beams under hogging moment. A total of 24 composite beams are included in the experiments, and ABAQUS software is used to establish finite element (FE) models that can simulate the mechanical properties of composite beams. In a parametric study, the influences of several major parameters, such as shear connection degree, stud arrangement and diameter, longitudinal and transverse reinforcement ratios, loading manner, and beam length, on flexural strength were investigated. Thereafter, three standards, namely, GB 50017, Eurocode 4, and BS 5950, were used to estimate the flexural strength of the composite beams. These codes were also compared with experimental and numerical results. Results indicate that GB 50017 may provide better estimations than the other two codes.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2978
Author(s):  
Zhi-Min Liu ◽  
Xue-Jin Huo ◽  
Guang-Ming Wang ◽  
Wen-Yu Ji

Compared with straight steel–concrete composite beams, curved composite beams exhibit more complicated mechanical behaviors under combined bending and torsion coupling. There are much fewer experimental studies on curved composite beams than those of straight composite beams. This study aimed to investigate the combined bending and torsion behavior of curved composite beams. This paper presents static loading tests of the full elastoplastic process of three curved composite box beams with various central angles and shear connection degrees. The test results showed that the specimens exhibited notable bending and torsion coupling force characteristics under static loading. The curvature and interface shear connection degree significantly affected the force behavior of the curved composite box beams. The specimens with weak shear connection degrees showed obvious interfacial longitudinal slip and transverse slip. Constraint distortion and torsion behavior caused the strain of the inner side of the structure to be higher than the strain of the outer side. The strain of the steel beam webs was approximately linear. In addition, fine finite element models of three curved composite box beams were established. The correctness and applicability of the finite element models were verified by comparing the test results and numerical calculation results for the load–displacement curve, load–rotational angle curve, load–interface slip curve, and cross-sectional strain distribution. Finite element modeling can be used as a reliable numerical tool for the large-scale parameter analysis of the elastic–plastic mechanical behavior of curved composite box beams.


2017 ◽  
Vol 893 ◽  
pp. 380-383
Author(s):  
Jun Xia ◽  
Z. Shen ◽  
Kun Liu

The tapered cross-section beams made of steel-concrete composite material are widely used in engineering constructions and their dynamic behavior is strongly influenced by the type of shear connection jointing the two different materials. The 1D high order finite element model for tapered cross-section steel-concrete composite material beam with interlayer slip was established in this paper. The Numerical results for vibration nature frequencies of the composite beams with two typical boundary conditions were compared with ANSYS using 2D plane stress element. The 1D element is more efficient and economical for the common tapered cross-section steel-concrete composite material beams in engineering.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4842
Author(s):  
Huanping Yang ◽  
Wei Zhuang ◽  
Wenbin Yan ◽  
Yaomian Wang

The nanoindentation loading response of elastoplastic materials was simulated by the finite element method (FEM). The influence of the Young’s modulus E, yield stress σy, strain hardening exponent n and Poisson’s ratio ν on the loading response was investigated. Based on an equivalent model, an equation with physical meaning was proposed to quantitatively describe the influence. The calculations agree well with the FEM simulations and experimental results in literature. Comparisons with the predictions using equations in the literature also show the reliability of the proposed equation. The investigations show that the loading curvature C increases with increasing E, σy, n and ν. The increase rates of C with E, σy, n and ν are different for their different influences on the flow stress after yielding. It is also found that the influence of one of the four mechanical parameters on C can be affected by the other mechanical parameters.


2020 ◽  
Vol 1010 ◽  
pp. 194-199
Author(s):  
Hamdan Yahya ◽  
Aspaniza Ahmad ◽  
Ismail Ibrahim

The effect of Al2O3 to the properties of whiteware porcelain such as water absorption, bulk density, flexural strength and crystalline phases were studied systematically. The result shows that the addition of alumina at maximum 5 wt.% in porcelain bodies increased the flexural strength of the fired bodies which can reach 55.5 MPa, 30% higher than 0.0% alumina content. However, slight decrease in the other physical and mechanical properties was observed with Al2O3 addition higher than 5 wt.%, which is believed to be due to increased corundum phase compared to mullite phase in porcelain body.


2007 ◽  
Vol 336-338 ◽  
pp. 1587-1589
Author(s):  
Wen Xu Li ◽  
Hua Zhao ◽  
Ying Song ◽  
Bin Su ◽  
Fu Ping Wang

Ca3(PO4)2/ZrO2 dental composite ceramics using for CAD/CAM system were prepared and the effects of weak phases on microstructures and mechanical properties were studied. The results showed that intergranular spreads happened with the increasing Ca3(PO4)2 contents due to the discontinuity of weak interfaces between Zirconia and Calcium phosphate in matrix. So the flexural strength and hardness of the Ca3(PO4)2/ZrO2 composite ceramics were decreased effectively, which improved the machinability of the composites. On the other hand, strong interfaces between Zirconias increased the integrality of the ceramic structures. ZrO2 composite Ceramics with 15% Ca3(PO4)2 were sintered at 1350°C. The flexural strength is 300.44MPa, fracture toughness is 4.36 MPam1/2, and hardness is 6.69 GPa. The cutting exponent of the Ca3(PO4)2/ZrO2 composite ceramics is obviously lower than that of the common commercial Vita Mark II and Dicor MGC ceramics, which shows good mechanical properties and machinability.


2012 ◽  
Vol 727-728 ◽  
pp. 993-998 ◽  
Author(s):  
A.M.F.D. Silva ◽  
L.S. Lovise ◽  
Sérgio Neves Monteiro ◽  
Carlos Maurício Fontes Vieira

Ashes generated in industrial processes are usually discarded and contribute to environmental pollution. Large scale incorporation into clayey ceramic products for civil construction, such as bricks and tiles, could be a permanent solution. Based on this rationale, this works has as its objective to characterize an ash waste from the incineration of elephant grass and to evaluate its incorporation into a clay to produce red ceramic. The waste was submitted to mineralogical and chemical characterization. Compositions were prepared with incorporation of the waste in amounts of up to 20 wt.% into the clay. Specimens were prepared by extrusion and fired in a laboratory furnace at 850°C. The physical and mechanical properties evaluated were: linear shrinkage, water absorption and flexural strength. The results showed that the waste is mainly composed of quartz and calcium compounds that sensibly reduce the linear shrinkage and does not change the other properties of the ceramic.


1990 ◽  
Vol 112 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Chienhom Lee ◽  
Dahsin Liu

Stitching has been found to be able to improve the interlaminar strength of composite laminates. Its application as composite joining has been also explored. This study examined the tensile strength of some stitched composite beams made of woven glass fabric and epoxy matrix. The effects of stitching parameters on joining strength were evaluated by both experimental technique and finite element method. It was found that there were two basic ways to improve the strength of stitching joint. One was to use high-density stitching in nonoverlap joint and the other was to use chain stitching in overlap joint. However, the former could give smoother surface and more uniform thickness than the latter. In addition, it was concluded from this study that stitching joint was more suitable for woven fabrics than for unidirectional prepreg tapes.


2010 ◽  
Vol 105-106 ◽  
pp. 49-50 ◽  
Author(s):  
Qi Liu ◽  
Long Quan Shao ◽  
Ning Wen ◽  
Bin Deng

The surface microhardness and flexural strength of colored zirconia were examined. Two groups of zirconia disks (1mm thick, 20mm in diameter) within 5 disks each were shading with the same coloring liquids IL2 (Vita Classic-scale) when another group of 5 disks measured in no color. The shading time of one group was 3s and that of the other group was prolonged to 30s. The mechanical properties were tested after sintering at 1500°C. Data were evaluated using ANOVA analysis. Disks of shading 30s showed a lower strength 712  53 MPa. The value of 3s was 853  46 MPa. There were no significant difference on microhardness between the two shading time. Prolonged the shading time lowered the biaxial flexural strength of zirconia ceramic, but shading time did no effect on surface microhardness.


Sign in / Sign up

Export Citation Format

Share Document