scholarly journals Impact of thin layer drying on bioactive compounds of jaboticaba (Plinia cauliflora) peel

Author(s):  
Karine Machry ◽  
Marcílio Machado Morais ◽  
Gabriela Silveira da Rosa

Jaboticaba (Plinia cauliflora) is a Brazilian fruit with a high content of anthocyanins compounds. Peel corresponds to 30 % of the fruit weight and it is considerated a residue since just the pulp is used. The aim of this work was to analyze the convective drying process of the jaboticaba peels. Moisture content of dried peels showed a range of 7.17 to 13.26 (% w.b.). The results also reported that jaboticaba peels have high anthocyanins content (fresh: 1162.99 ± 41.35 mg/100g d.b) and it was possible to maintain these compounds even after the drying process (1052 to 1270 mg/100g d.b).Keywords: jaboticaba; peel; drying; residue; anthocyanins.

Author(s):  
Magesh Ganesapillai ◽  
I. Regupathi ◽  
Thanapalan Murugesan

Drying kinetics of microwave, convective and microwave assisted convective drying of thin layer Nendran banana was investigated on a modified microwave oven. The drying characteristics through the operating parameters of the drying process, such as power output, air temperature, slice thickness and sample mass in terms of drying rate equation, were analyzed. An appropriate empirical model to represent the drying process was established by analyzing the available literature models with current experimental data. The statistical analysis for the selected model was performed, parameters like Mean Bias Error, Root Mean Square Error, reduced chi square and t-stat were estimated to examine the consistency of the model to represent the present experimental results. Higher rates and shorter drying times were achieved at a higher temperature and microwave heating power and lesser sample thickness and load. Microwave drying resulted in a substantial decrease in the drying time with better quality product when dried at higher power (300 W) level compared to other processes.


2008 ◽  
Vol 85 (3) ◽  
pp. 372-380 ◽  
Author(s):  
Otoniel Corzo ◽  
Nelson Bracho ◽  
Alberto Vásquez ◽  
Angel Pereira

2007 ◽  
Vol 13 (1) ◽  
pp. 35-40 ◽  
Author(s):  
O. P. Sobukola ◽  
O. U. Dairo ◽  
L. O. Sanni ◽  
A. V. Odunewu ◽  
B. O. Fafiolu

Open sun drying experiments in thin layers of crain-crain (CC), fever (FV) and bitter (BT) leaves grown in Abeokuta, Nigeria were conducted. The drying process took place in the falling rate period and no constant rate period was observed from the drying curves. Eight thin layer mathematical drying models were compared using the multiple determination coefficients (R2), reduced chi-square (χ2) and root mean square error (RMSE) between the observed and predicted moisture ratios. Accordingly, Midilli et al. model satisfactorily described the drying curves of the three leaves with R2 of 0.9980, χ2 of 2.0×10-4 and RMSE of 1.09×10-2 for CC leaves; R2 of 0.9999, χ2 of 2×10-6 and RMSE of 1.11×10-3 for FV leaves; and R2 of 0.9998, χ2 of 1.9×10-5 and RMSE of 3.3×10-3 for BT leaves. The effective diffusivity was found to be 52.91×10-10, 48.72×10-10 and 43.42×10-10 m2/s for CC, BT and FV leaves, respectively.


2019 ◽  
Vol 20 (2) ◽  
pp. 1-10
Author(s):  
Ignacio López Cerino ◽  
Irineo Lorenzo López Cruz ◽  
Serm Janjai ◽  
Marcus Nagle ◽  
Busarakorn Mahayothee ◽  
...  

The objectives of this research were two: first to investigate experimentally the behavior of pineappl (Ananas comosus, L.) thin layer drying in a greenhouse-type solar dryer and second to describe the best fitting kinetic and mathematical model taken from literature. A large scale greenhouse dryer designed and installed at Silpakorn University, Nakhon Pathom, Thailand was used to dry slices 1 cm width at temperature range between 25-60 °C with relative humidity between 50-90%. Nine statistical models, either empirical or semi-empirical, were tested in order to validate the experimental data. A non-linear regression analysis conducted by a statistical computer program was applied to evaluate the constants of all the models. The parameter values, root mean square error (RMSE), mean absolute error (MAE) and modelling efficiency (EFF) of the nine models were calculated. Comparison outcomes of two experiments are displayed between the predicted moisture content and the observed pineapple moisture content. Hasibuan and Daud drying model proved to describe the best pineapple solar drying curves. The two experiments were carried out on sunny days, the second experiment on the third day showed cloudiness decreasing the solar radiation. Mathematical models of pineapple drying in a greenhouse dryer have not been found so far in the literature. Drying curves obtained from experiments showed that the constant drying and the falling drying rate periods exist. Nine thin-layer drying models were fitted to two experimental data in order to describe the drying characteristics of pineapple founding that the Hasibuan and Daud model was the best fitting.


2020 ◽  
Vol 175 ◽  
pp. 05021
Author(s):  
Sergey Antipov ◽  
Andrey Klyuchnikov ◽  
Dmitry Kazartsev

At the present time the maim quantity of free-running food products, including grains, are dried in units with convective method of heat input. To intensify convective drying, general attention is paid to improving the method of moving and mixing the product with drying agent, to guarantee fast and quality drying. The use of high and super-high frequency allows can significantly intensify the drying processes, because the phenomenon of super-high frequencies energy into heat conversion throughout the processed material volume contributes to the most uniform heating of the product, compared to other heat input methods. The optimal solution for drying free-running food products is a combination of convective and high-frequency heat input methods. This combination allows controlling gradients of moisture content and temperature, changing its directions, which significantly affects quality of the resulting dry product. In this regard, combined approach to drying process modeling is of practical interest: on the one hand, there are used analytical solutions, based on physical laws application or phenomenological equations, and, on the other hand, experimentally established a relationship between temperature and moisture content of media, which is considered as a heat and mass transfer characteristic for each material.


2013 ◽  
Vol 371 ◽  
pp. 323-327
Author(s):  
Miloš Vasić ◽  
Zagorka Radojević

Drying results, determined on samples made of masonry clay from the locality "Banatski Karlovac", are presented in this study. Experimental investigations were carried out in a laboratory recirculation dryer in which drying parameters (humidity, temperature, and velocity) could be programmed, controlled and monitored during drying process. Several mathematical models were used for drying process modelling. New semi-theoretical thin layer drying model, for heavy clay products, was developed and presented in this study. It represents a modification of Page's and logarithm's thin layer drying models. Results presented in this study have shown that new thin layer drying model describes and correlates the best experimentally determined drying process.


2021 ◽  
Vol 37 (4) ◽  
pp. 713-724
Author(s):  
Fuji Jian ◽  
Mehul Patil ◽  
Digvir S. Jayas ◽  
Jitendra Paliwal

Highlights Thin-layer drying of fresh and sun-dried buckwheat hay was studied at 30°C to 180°C and 12.5% to 60% relative humidities. Buckwheat hay drying occurred in the falling-rate period. Partial sun-drying of the hay could reduce drying time by 50%. The D eff values of fresh flowers, leaves, and stems ranged from 1.4×10 -10 to 60×10 -10 m 2 /s. Abstract. Thin-layer drying characteristics of fresh and sun-dried buckwheat hay were studied at 30°C to 180°C, 12.5 to 60% relative humidities, and 0.2 m/s constant air velocity. The hay was harvested on three different times with a 10 to 12 d interval between the harvesting times. Half of the harvested hay was sun-dried on the field for 4 d (referred to as sun-dried hay). The drying behavior of flowers, leaves, and stems of the fresh and sun-dried hay was characterized. Moisture content of the fresh buckwheat flower was 0.777 to 1.633 (decimal dry basis), and fresh stems had a maximum moisture content of 5.64. Moisture content of the fresh hay decreased with the increase of growth time. Sun-drying on field could decrease more than half of the moisture content of the harvested fresh hay. Flowers, leaves, and stems needed varying drying times to reach their equilibrium moisture contents. The order of the drying time from the fastest to the slowest was flowers, leaves, then stems. Sun-dried and later harvested hay needed less drying time. The logarithmic model was the best fit for all drying processes of the flowers, leaves, and stems at different harvesting times and drying conditions. The effective moisture diffusivity of both fresh and sun-dried hay ranged from 1.4×10-10 to 60× 10-10 m2/s depending on different experimental conditions. The activation energy of the hay was from 21.08 to 33.85 kJ/mol. A power equation was the best equation to describe the drying constant of hay with their drying temperature. Keywords: Activation energy, Combination drying, Hay drying, Thin-layer drying, Water diffusivity.


Sign in / Sign up

Export Citation Format

Share Document