scholarly journals Reduced Burst Release from ePTFE Grafts: A New Coating Method for Controlled Drug Release

2008 ◽  
Vol 29 (2) ◽  
pp. 422-426 ◽  
2014 ◽  
Vol 1033-1034 ◽  
pp. 1005-1008
Author(s):  
Ping Li ◽  
Zhang Wang ◽  
Fei Luo ◽  
Xiu Feng Xiao

A novel and facile process called “alternative loop immersion method” formed bioactive and biocompatible Zn-doped calcium silicate coating over the drug-loaded titania nanotube arrays to improve the properties of drug release. The samples were characterized by scanning electronic microscope (SEM), x-ray diffraction (XRD) and fourier transform infrared (FT-IR). The results show that TNTs modified by Zn-doped calcium silicate coating possess improved drug release characteristics with reduced burst release (from 83% to 66%) and prolonged drug release (from 11 days to over 15 days). This approach provides an alternative to tailor the surface of TNTs and offer considerable propects for diverse biomedical applications.


MRS Advances ◽  
2020 ◽  
Vol 5 (46-47) ◽  
pp. 2409-2417
Author(s):  
Ryan Go ◽  
Shadi Houshyar ◽  
Kate Fox ◽  
Yen Bach Truong

AbstractA drug delivery system with sustainable controlled drug release can improve the quality of life of a patient by reducing the side-effects and better absorption of the drug locally. However, the main disadvantageous of this delivery model is the burst release of the drug, which can result in severe health problem, such as toxicity. Here in this study, a new coaxial microfiber has been developed with encapsulated anti-inflammatory drug, ibuprofen, inside the core structure of the coaxial fibre. The core consisting of polyethylene oxide (PEO) carrying the drug was covered with the polylactic acid (PLA)/PEO and shell to prevent the burst release of the drug and provide sustainable release over a prolonged time. The release profiles showed that the burst release was reduced from 20% in control scaffold, core only, to 5% in core-shell structure after 6 hrs. The higher percentage of PLA in the shell composition provides a slower release of ibuprofen, due to the slower degradation of PLA in comparison with PEO. The result indicates the developed structure can be a potential system for the localized release of the various drug system, which leads to a more sustainable and controlled release of the drug over the more extended period and deliver a better outcome along with side-effect prevention.


RSC Advances ◽  
2015 ◽  
Vol 5 (128) ◽  
pp. 105880-105888 ◽  
Author(s):  
Haozhe He ◽  
Yanrong Ren ◽  
Yuge Dou ◽  
Tao Ding ◽  
Xiaomin Fang ◽  
...  

In order to improve the stability of micelles and decrease the burst release of loaded drugs, photo-cross-linked micelles were prepared via photodimerization of the coumarin moiety on amphiphilic poly(ether amine) (PEAC).


2018 ◽  
Vol 68 (12) ◽  
pp. 2925-2918
Author(s):  
Gabriela Cioca ◽  
Maricel Agop ◽  
Marcel Popa ◽  
Simona Bungau ◽  
Irina Butuc

One of the main challenges in designing a release system is the possibility to control the release rate in order to maintain it at a constant value below a defined limit, to avoid exceeding the toxicity threshold. We propose a method of overcoming this difficulty by introducing the drug into liposomes, prior to its inclusion in the hydrogel. Furthermore, a natural cross linker (as is tannic acid) is used, instead of the toxic cross linkers commonly used, thus reducing the toxicity of the release system as a whole.


2019 ◽  
Vol 16 (10) ◽  
pp. 931-939
Author(s):  
Marilena Vlachou ◽  
Angeliki Siamidi ◽  
Yannis Dotsikas

Background: The loop diuretic drug furosemide is widely used for the treatment of edema in various conditions, such as pulmonary, cardiac and hepatic edema, as well as cardiac infarction. Furosemide, due to its poor water solubility and low bioavailability after oral administration of conventional dosage form, is categorized as class IV in the biopharmaceutical classification system. Objective: In the case of furosemide, this release profile is responsible for various physiological problems, acute diuresis being the most serious. This adverse effect can be circumvented by the modified release of furosemide from tablet formulations compared to those forms designed for immediate release. Method: In this report, a D-optimal combined experimental design was applied for the development of furosemide containing bilayer and compression coated tablets, aiming at lowering the drug’s burst release in the acidic environment of the stomach. A D-optimal combined design was selected in order to include all requirements in one design with many levels for the factors examined. The following responses were selected as the ones reflecting better criteria for the desired drug release: dissolution at 120 min (30-40%), 300 min (60-70%) and 480 min >95%. The new formulations, suggested by the Doptimal combined design, incorporated different grades of Eudragit ® polymers (Eudragit® E100 and Eudragit® L100-55), lactose monohydrate and HPMC K15M. The dissolution profile of furosemide from these systems was probed via in vitro dissolution experiments in buffer solutions simulating the pH of the gastrointestinal tract. Results: The results indicate that the use of Eudragit® E100 in conjunction with lactose monohydrate led to 21.32-40.85 % drug release, in the gastric medium, in both compression-coated and bilayer tablets. This is lower than the release of the mainstream drug Lasix® (t=120 min, 44.5% drug release), implying longer gastric retention and drug waste minimization. Conclusion: Furosemide’s release in the intestinal environment, from compression coated tablets incorporating Eudragit® L100-55 and HPMC K15M in the inner core or one of the two layers of the bilayer tablets, was delayed, compared to Lasix®


2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph C. Bear ◽  
P. Stephen Patrick ◽  
Alfred Casson ◽  
Paul Southern ◽  
Fang-Yu Lin ◽  
...  

Author(s):  
Suyoung Been ◽  
Jeongmin Choi ◽  
Young Hun Lee ◽  
Pil Yun Kim ◽  
Won Kyung Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document