The Biological Effects of Calcium Phosphate Coated Implant for Osseointegration in Beagle Dogs

2003 ◽  
Vol 33 (4) ◽  
pp. 651
Author(s):  
Eon-Cheol Shim ◽  
Sung-Bin Lim ◽  
Chin-Hyung Chung ◽  
Jong-Yeo Kim
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3693
Author(s):  
Yurii P. Sharkeev ◽  
Ekaterina G. Komarova ◽  
Valentina V. Chebodaeva ◽  
Mariya B. Sedelnikova ◽  
Aleksandr M. Zakharenko ◽  
...  

A modern trend in traumatology, orthopedics, and implantology is the development of materials and coatings with an amorphous–crystalline structure that exhibits excellent biocopatibility. The structure and physico–chemical and biological properties of calcium phosphate (CaP) coatings deposited on Ti plates using the micro-arc oxidation (MAO) method under different voltages (200, 250, and 300 V) were studied. Amorphous, nanocrystalline, and microcrystalline statesof CaHPO4 and β-Ca2P2O7were observed in the coatings using TEM and XRD. The increase in MAO voltage resulted in augmentation of the surface roughness Ra from 2.5 to 6.5 µm, mass from 10 to 25 mg, thickness from 50 to 105 µm, and Ca/P ratio from 0.3 to 0.6. The electrical potential (EP) of the CaP coatings changed from −456 to −535 mV, while the zeta potential (ZP) decreased from −53 to −40 mV following an increase in the values of the MAO voltage. Numerous correlations of physical and chemical indices of CaP coatings were estimated. A decrease in the ZP magnitudes of CaP coatings deposited at 200–250 V was strongly associated with elevated hTERT expression in tumor-derived Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodies and then contacted in vitro with CaP-coated samples for 14 days. In turn, in vitro survival of CD4+ subsets was enhanced, with proinflammatory cytokine secretion of activated Jurkat T cells. Thus, the applied MAO voltage allowed the regulation of the physicochemical properties of amorphous–crystalline CaP-coatings on Ti substrates to a certain extent. This method may be used as a technological mechanism to trigger the behavior of cells through contact with micro-arc CaP coatings. The possible role of negative ZP and Ca2+ as effectors of the biological effects of amorphous–crystalline CaP coatings is discussed. Micro-arc CaP coatings should be carefully tested to determine their suitability for use in patients with chronic lymphoid malignancies.


2004 ◽  
Vol 34 (1) ◽  
pp. 113 ◽  
Author(s):  
Dong-Hoon Baik ◽  
Sung-Joon Hwang ◽  
Chang-Sung Kim ◽  
Yong-Keun Lee ◽  
Kyoo-Sung Cho ◽  
...  

2003 ◽  
Vol 240-242 ◽  
pp. 391-394 ◽  
Author(s):  
Yong Keun Lee ◽  
H.S. Kim ◽  
Kyoo Sung Cho ◽  
Kyoung Nam Kim ◽  
Seong Ho Choi

Author(s):  
Seong Ho Choi ◽  
D.H. Baik ◽  
C.S. Kim ◽  
Chong Kwan Kim ◽  
Kyoung Nam Kim ◽  
...  

2006 ◽  
Vol 975 ◽  
Author(s):  
Wilfredo Otaño ◽  
Víctor M. Pantojas ◽  
Juan M. Figueroa ◽  
Darimar Hernández ◽  
Alejandro Rodríguez-Navarro

ABSTRACTHydroxyapatite (HA) is a calcium phosphate mineral analogous to the mineral part of bone. This similarity makes this material bioactive and suitable to coat medical implants. However, at present, there is not a coating technique which gives the coated implant the desired properties and long life required for medical implants.In an effort to produce HA coatings with improved properties, calcium phosphate films were prepared using magnetron sputtering deposition on a silicon substrate at 600°C. Initial efforts resulted in the deposition of amorphous films with a distinctive grain-like surface morphology. The morphological grain size was studied using SEM and found that it was possible to control the average diameter value of the round shaped grains by adjusting the deposition time. Increasing the deposition time increases the mean grain diameter. EDS spectra showed the unintentional addition of carbon, iron and nickel to the samples during deposition. After eliminating the impurities, it was possible to prepare calcium phosphate films in the HA phase but without the grain-like surface morphology. These results suggested that the impurities prevented the formation of the calcium phosphate HA phase while acting as nuclei for the heterogeneous nucleation of the grains. This is an important result where the deposition process parameters can be controlled to functionalize the films in order to produce distinctive nanoscale features in the surface morphology.


2010 ◽  
Vol 70 (3-6) ◽  
pp. 225-242 ◽  
Author(s):  
Youliang Hong ◽  
Hongsong Fan ◽  
Bo Li ◽  
Bo Guo ◽  
Ming Liu ◽  
...  

2012 ◽  
Vol 486 ◽  
pp. 422-425 ◽  
Author(s):  
Lan Lei Wang ◽  
Ji Hua Li ◽  
Yong Tao Xie ◽  
Pi Shan Yang ◽  
Yun Mao Liao ◽  
...  

The aim of the present study is to investigate the efficacy of nanobiphasic calcium phosphate (nanoBCP) bioceramic in the treatment of periodontal osseous defects. Alveolar bone defects were surgically created bilaterally at the buccal aspects of four second premolars in two beagle dogs. After root leveling, nanoBCP was randomly filled in one defect and nothing was put into the contralateral defect as negative controls. Bioglass was randomly filled in one of left defect as positive controls and nothing was put into the contralateral defect as negative controls. Dogs were killed at the 12th week. Histological observations were processed through a light microscopy. The results reveal that a great amount of functional periodontal fissures formed in the defects in the nanoBCP groups and bioglass groups while no new bone formed in the control groups at all. In this study, nanoBCP has proven to work well as a biocompatible and bioactive material to promote periodontal regeneration effectively.


1972 ◽  
Vol 22 (6) ◽  
pp. 863-871 ◽  
Author(s):  
R. G. Thomas ◽  
R. O. Mcclellan ◽  
Randi L. Thomas ◽  
T. L. Chiffelle ◽  
C. H. Hobbs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document