scholarly journals Thermal comfort in the space with personal radiant panel heating system.

1991 ◽  
Vol 27 (2) ◽  
pp. 65-72 ◽  
Author(s):  
Shin'ich TANABE ◽  
Ken'ichi KIMURA
2021 ◽  
Vol 11 (14) ◽  
pp. 6254
Author(s):  
Elena G. Dascalaki ◽  
Constantinos A. Balaras

In an effort to reduce the operational cost of their dwellings, occupants may even have to sacrifice their indoor thermal comfort conditions. Following the economic recession in Greece over recent years, homeowners have been forced to adapt their practices by shortening heating hours, lowering the indoor thermostat settings, isolating spaces that are not heated or even turning off their central heating system and using alternative local heating systems. This paper presents the results from over 100 occupant surveys using questionnaires and walk-through energy audits in Hellenic households that documented how occupants operated the heating systems in their dwellings and the resulting indoor thermal comfort conditions and actual energy use. The results indicate that the perceived winter thermal comfort conditions were satisfactory in only half of the dwellings, since the actual operating space heating periods averaged only 5 h (compared with the assumed 18 h in standard conditions), while less than half heated their entire dwellings and only a fifth maintained an indoor setpoint temperature of 20 °C, corresponding to standard comfort conditions. Mainstream energy conservation measures include system maintenance, switching to more efficient systems, reducing heat losses and installing controls. This information is then used to derive empirical adaptation factors for bridging the gap between the calculated and actual energy use, making more realistic estimates of the expected energy savings following building renovations, setting prudent targets for energy efficiency and developing effective plans toward a decarbonized building stock.


2021 ◽  
Author(s):  
Christopher L. K. Wang

As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as the thermal condition which enables sleep to most efficiently rejuvenate the body and mind. A comfort model was developed to stimulate the respective thermal environment required to achieve the desired body thermal conditions and a new infrared sphere method was developed to measure mean radiant temperature. Existing heating conditions according to building code conditions during sleeping hours was calculated to likely overheat a sleeping person and allowed energy saving potential by reducing nighttime heating set points. Experimenting with existing radiantly and forced air heated residential buildings, it was confirmed that thermal environment was too hot for comfortable sleep and that the infrared sphere method shows promise. With the site data, potential energy savings were calculated and around 10% of energy consumption reduction may be achieved during peak heating.


2019 ◽  
Vol 9 (1) ◽  
pp. 121-124
Author(s):  
Florin-Emilian Turcanu ◽  
Ana Diana Ancas ◽  
Mihai Profire ◽  
Marina Verdes ◽  
Marius Costel Balan

Abstract This paper evaluates a static heating system from a church. They are presented in almost every church. Temperature distribution in the church is done in 2d plane. The simulation is presented on a particular example, the Dormition of the Mother of God Church from Jassy, Romania. The heating system had been simulated in FLUENT and the consequences over the interior climate in the church are showed. An important issue is the impact of this system over the artwork, the church being rise in XVIII century.


2020 ◽  
Vol 5 ◽  
pp. 11
Author(s):  
Sabrin Korichi ◽  
Bachir Bouchekima ◽  
Nabiha Naili ◽  
Messaouda Azzouzi

Motivated by the rapid spread of the novel pandemic disease (COVID-19) that swept the most countries in the world, a new radiation heating system consists of wall radiator panel system connected to a reversible geothermal heat pump (GHP) coupled with horizontal ground heat exchanger (HGHX) was proposed as fast and permanent solution to the risks of the dispersion of airborne infectious diseases in air-conditioned enclosed spaces. An experimental system was installed and tested in the laboratory of thermal process of Research and Technology Center of Energy (CRTEn), Tunisia, in order to achieve the two main goals of this work: developing a new radiation heating system with quick and inexpensive implementation while ensuring high efficiency and environment-friendly performance for the entire system. The results obtained show that it is feasible to use the novel RPHs as heat rejecter of the horizontal ground source heat pump system (HGSHPs) for heating buildings with limited surface land areas epically those located in the Mediterranean regions such as Tunisia, the average performance coefficients of the geothermal heat pump COPhp and the overall system COPsys are found to be 6.3 and 3, respectively. The thermal comfort analysis indicates that there is only a small vertical temperature fluctuation in the test room that would not produce any negative effect on thermal comfort.


2014 ◽  
Vol 79 (706) ◽  
pp. 1029-1035
Author(s):  
Manami SHINOHARA ◽  
Shin-ichi TANABE ◽  
Shin-ichi KAGIYA ◽  
Kazunori MATSUMAE

2013 ◽  
Vol 543 ◽  
pp. 389-392 ◽  
Author(s):  
Gilberto Batista ◽  
Pedro Dinis Gaspar ◽  
Pedro D. Silva

This paper presents the development of an innovative control, regulation and command system for hydronic radiant floors, more flexible and efficient that guarantees a better thermal comfort to the user and simultaneously improves the energy efficiency of this type of heating system. The majority of the actual control of hydronic radiant floors is done by thermostats that measure the air temperature and control the actuators (pumps and valves) in order to maintain the room at the specified temperature. These systems requires the frequent adjustment of thermostats set-point in order to obtain thermal comfort as it depends on other factors than just the air temperature, such as, the air humidity, external environmental conditions, radiant temperature, among others. This paper presents a control, regulation and command solution that requires minimum user intervention, as the user only has to choose the desirable thermal comfort level. The control algorithm is based on the calculation of PMV (Predicted Mean Vote) index as defined on Thermal Comfort Standard ISO 7730. Another advantage of the proposed system is related to the wireless and energy harvesting sensors and actuators that provide much more flexibility to the system.


2016 ◽  
Vol 8 ◽  
pp. 48-57 ◽  
Author(s):  
Sihwan Lee ◽  
Beungyong Park ◽  
Jeongil Kim ◽  
Shinsuke Kato

2009 ◽  
Vol 4 (3) ◽  
pp. 135-142
Author(s):  
Hussein Abaza

This paper presents the results of “Upgrade and Save”, a program to upgrade the standard electric furnaces and air-conditioning units in Mobile Homes for energy-efficient heat pumps. This program is implemented in North Carolina, USA and pays about $700 through a rebate provided by the North Carolina State Energy Office to the Mobile Homes' owners. The goal of this project is to subsidize low-income families by lowering their heating cost in the winter as well as improving their homes' indoor thermal comfort. More than 300 mobile homes have participated in this program. Field measurements, meter readings of the actual electrical consumption, and annual building energy simulation were used to measure the dollar saving and the indoor thermal comfort improvement in the mobile homes after the heating system upgrade. This research proved that the dollar saving of using the heat pump for heating in mobile homes ranges from $51 to $128 annually.


Sign in / Sign up

Export Citation Format

Share Document