scholarly journals Combined Effects of Elevated Temperature and Carbon Dioxide on Geometry of Maize Leaves

10.5109/4708 ◽  
2006 ◽  
Vol 51 (1) ◽  
pp. 45-51
Author(s):  
Tomokazu Haraguchi ◽  
Kozue Yuge ◽  
Aimin Hao ◽  
Yoshisuke Nakano ◽  
Ken Mori ◽  
...  
1970 ◽  
Vol 44 (1) ◽  
pp. 35-56 ◽  
Author(s):  
M. J. Howell

1. Metacercarial cysts of Echinoparyphium serratum occur in the pericardium of the snail Isidorella brazieri. Each cyst is surrounded by a nucleated, syncytial host capsule containing granules which are presumed to be melanin. The cyst wall consists of two layers and both contain acid and neutral mucopolysaccharide but little or no protein. No modification of the cyst wall coincident with the point of emergence of the metacercaria has been located.2. Excystment of the metacercaria takes place in two main stages when pepsin is omitted from the initial pretreatment solution: stage I (emergence from the cyst wall through the escape aperture) is an active process (exogenous enzymes are not necessary), and a high percentage of specimens reaching this stage is dependent on the combined effects of a þH of 2, reducing conditions, elevated temperature (37–39°C) and sodium cholate. Temperature and sodium cholate are absolute requirements for this stage as is pretreatment of between þH 2 and 4 when sodium cholate is included with the reductant (sodium dithionite) rather than in the excystment medium with trypsin. The possibility that CO2 is involved has not been established.


Author(s):  
Georgiana CIOROIANU ◽  
Claudia Felicia OGNEAN ◽  
Mihai OGNEAN

Chemical leaveners are used to give cookies, cakes, and other baked goods their characteristic textures. They produce gas when a carbon dioxide source and an acid are mixed together and come into contact with water. The most common sources of gas are sodium or potassium bicarbonate alone or in combination with ammonium bicarbonate. A great variety of acids are used in baking powder formulations. The acid are classified according to their capacity to react at lower or elevated temperature as rapid or slow acting. The aim of these study is to evaluate a very rapid acting acid (tartaric acid) and a slow to very slow acting acid (sodium acid pyrophosphate - SAPP) on the characteristics of short biscuits. The acids were added to reach 0, 25%, 50%, 75% and 100% of neutralizing values (VN). The biscuits height and diameter, alkalinity and sensorial profile were determined.


2018 ◽  
Vol 139 ◽  
pp. 129-135 ◽  
Author(s):  
Edward M. Mager ◽  
Christina Pasparakis ◽  
John D. Stieglitz ◽  
Ronald Hoenig ◽  
Jeffrey M. Morris ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Laura A Newcomb ◽  
Matthew N George ◽  
Michael J O’Donnell ◽  
Emily Carrington

AbstractPredicting how combinations of stressors will affect failure risk is a key challenge for the field of ecomechanics and, more generally, ecophysiology. Environmental conditions often influence the manufacture and durability of biomaterials, inducing structural failure that potentially compromises organismal reproduction, growth, and survival. Species known for tight linkages between structural integrity and survival include bivalve mussels, which produce numerous byssal threads to attach to hard substrate. Among the current environmental threats to marine organisms are ocean warming and acidification. Elevated pCO2 exposure is known to weaken byssal threads by compromising the strength of the adhesive plaque. This study uses structural analysis to evaluate how an additional stressor, elevated temperature, influences byssal thread quality and production. Mussels (Mytilus trossulus) were placed in controlled temperature and pCO2 treatments, and then, newly produced threads were counted and pulled to failure to determine byssus strength. The effects of elevated temperature on mussel attachment were dramatic; mussels produced 60% weaker and 65% fewer threads at 25°C in comparison to 10°C. These effects combine to weaken overall attachment by 64–88% at 25°C. The magnitude of the effect of pCO2 on thread strength was substantially lower than that of temperature and, contrary to our expectations, positive at high pCO2 exposure. Failure mode analysis localized the effect of temperature to the proximal region of the thread, whereas pCO2 affected only the adhesive plaques. The two stressors therefore act independently, and because their respective target regions are interconnected (resisting tension in series), their combined effects on thread strength are exactly equal to the effect of the strongest stressor. Altogether, these results show that mussels, and the coastal communities they support, may be more vulnerable to the negative effects of ocean warming than ocean acidification.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 478 ◽  
Author(s):  
Ladi Peter Mshelia ◽  
Jinap Selamat ◽  
Nik Iskandar Putra Samsudin ◽  
Mohd Y. Rafii ◽  
Noor-Azira Abdul Mutalib ◽  
...  

Climate change is primarily manifested by elevated temperature and carbon dioxide (CO2) levels and is projected to provide suitable cultivation grounds for pests and pathogens in the otherwise unsuitable regions. The impacts of climate change have been predicted in many parts of the world, which could threaten global food safety and food security. The aim of the present work was therefore to examine the interacting effects of water activity (aw) (0.92, 0.95, 0.98 aw), CO2 (400, 800, 1200 ppm) and temperature (30, 35 °C and 30, 33 °C for Fusarium verticillioides and F. graminearum, respectively) on fungal growth and mycotoxin production of acclimatised isolates of F. verticillioides and F. graminearum isolated from maize. To determine fungal growth, the colony diameters were measured on days 1, 3, 5, and 7. The mycotoxins produced were quantified using a quadrupole-time-of-flight mass spectrometer (QTOF-MS) combined with ultra-high-performance liquid chromatography (UHPLC) system. For F. verticillioides, the optimum conditions for growth of fumonisin B1 (FB1), and fumonisin B2 (FB2) were 30 °C + 0.98 aw + 400 ppm CO2. These conditions were also optimum for F. graminearum growth, and zearalenone (ZEA) and deoxynivalenol (DON) production. Since 30 °C and 400 ppm CO2 were the baseline treatments, it was hence concluded that the elevated temperature and CO2 levels tested did not seem to significantly impact fungal growth and mycotoxin production of acclimatised Fusarium isolates. To the best of our knowledge thus far, the present work described for the first time the effects of simulated climate change conditions on fungal growth and mycotoxin production of acclimatised isolates of F. verticillioides and F. graminearum.


Author(s):  
Audrius Bagdanavicius ◽  
Nasser Shelil ◽  
Philip J. Bowen ◽  
Nick Syred ◽  
Andrew P. Crayford

Increasing interest in alternative fuels for gas turbines stimulates research in gaseous fuels other than natural gas. Various gas mixtures, based on methane as the main component, are considered as possible fuels in the future. In particular, methane enrichment with hydrogen or dilution with carbon dioxide is of considerable interest. Some experiments and numerical calculations have been undertaken to investigate methane-hydrogen and methane-carbon dioxide gas flames, however most of these investigations are limited by particular pressure or temperature conditions. This paper presents the investigation of the combustion of methane–carbon dioxide mixtures at atmospheric and elevated temperature and pressure conditions. Two experimental rigs were used, a Bunsen burner and swirl burner. Bunsen burner experiments were performed in the High Pressure Optical Chamber, which is located within the Gas Turbine Research Centre of Cardiff University — at 3 bara and 7 bara pressure, and 473 K, 573 K and 673 K temperature conditions for lean and rich mixtures. Planar Laser Tomography (PLT) was applied to investigate turbulent burning velocity. Burning velocity of the gas mixture was calculated using two different image processing techniques and the difference in the results obtained using these two techniques is presented and discussed. Laser Doppler anemometry (LDA) was utilised to define turbulence characteristics such as turbulence intensity and integral length scale. Due to the variability of the velocity flow field and turbulence intensity across Bunsen burners, the importance of measuring position and conditions is discussed. The sensitivity of this variance on the flame regime as defined in the Borghi diagram is evaluated. In the second part of the study, a generic swirl burner was used to define the flame flashback limits for methane–carbon dioxide mixtures at atmospheric conditions. The gas mixture stability graphs are plotted, and the effect of CO2 addition are discussed.


2012 ◽  
Vol 9 (5) ◽  
pp. 1885-1896 ◽  
Author(s):  
A. Hoogstraten ◽  
M. Peters ◽  
K. R. Timmermans ◽  
H. J. W. de Baar

Abstract. Phaeocystis globosa (Prymnesiophyceae) is an ecologically dominating phytoplankton species in many areas around the world. It plays an important role in both the global sulfur and carbon cycles, by the production of dimethylsulfide (DMS) and the drawdown of inorganic carbon. Phaeocystis globosa has a polymorphic life cycle and is considered to be a harmful algal bloom (HAB) forming species. All these aspects make this an interesting species to study the effects of increasing carbon dioxide (CO2) concentrations, due to anthropogenic carbon emissions. Here, the combined effects of three different dissolved carbon dioxide concentrations (CO2(aq)) (low: 4 μmol kg−1, intermediate: 6–10 μmol kg−1 and high CO2(aq): 21–24 μmol kg−1) and two different light intensities (low light, suboptimal: 80 μmol photons m−2 s−1 and high light, light saturated: 240 μmol photons m−2 s−1) are reported. The experiments demonstrated that the specific growth rate of P. globosa in the high light cultures decreased with increasing CO2(aq) from 1.4 to 1.1 d−1 in the low and high CO2 cultures, respectively. Concurrently, the photosynthetic efficiency (FV/FM) increased with increasing CO2(aq) from 0.56 to 0.66. The different light conditions affected photosynthetic efficiency and cellular chlorophyll a concentrations, both of which were lower in the high light cultures as compared to the low light cultures. These results suggest that in future inorganic carbon enriched oceans, P. globosa will become less competitive and feedback mechanisms to global change may decrease in strength.


Sign in / Sign up

Export Citation Format

Share Document