scholarly journals VIEWS and NEWS Integrative high-throughput sequencing in personalized oncology • 10th Carbohydrate Bioengineering Meeting • 12th International Symposium on the Genetics of Industrial Microorganisms • Novel consolidated bioprocess for biofuel production in E. coli • Protein Engineering: New Approaches and Applications • Tomato genome published • Use of Google algorithm to identify pancreatic cancer biomarkers.

2012 ◽  
Vol 3 ◽  
pp. 273-275
Author(s):  
Joanna Przybył
2017 ◽  
Vol 83 (22) ◽  
Author(s):  
Konstantia Gkarmiri ◽  
Shahid Mahmood ◽  
Alf Ekblad ◽  
Sadhna Alström ◽  
Nils Högberg ◽  
...  

ABSTRACT RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13CO2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia, Proteobacteria, Planctomycetes, Acidobacteria, Gemmatimonadetes, Actinobacteria, and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13C- and 12C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces, Rhizobium, and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas (Kaistobacter) were dominant in rhizosphere soil. “Candidatus Nitrososphaera” was enriched in 13C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napus. IMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13CO2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture.


2021 ◽  
Vol 6 ◽  
pp. 27-35

Phage therapy is a promising alternative therapy for the treatment of E. coli infection. Although the total number of phages on the earth is as high as 10 31 , the reported phages and thoroughly studied are very limited. Therefore, the continuous discovery of new phages and in-depth research will provide materials for the wide application of phage therapy in the future. In this study, a novel E. coli phage vB_EcoM_011D4 was isolated from sewage samples, and the biological characteristics were studied. Electron microscopy and homology analysis results showed that vB_EcoM_011D4 belongs to the family Myoviridae. One-step growth curve showing the latent period of vB_EcoM_011D4 was 10 min, with the burst size of 115 PFU/cell. Additionally, Phage vB_EcoM_011D4 was highly stabled under different temperatures (range 4 – 70 ℃) and pH conditions (range 6 – 10). At the same time, its genome was subjected to high-throughput sequencing and compared with the reported phages. The results of high-throughput sequencing assembly showed that vB_EcoM_011D4 is a linear, double-stranded DNA virus containing 163764 bp, with an average GC content of 40.50%, and a total of 273 open reading frames (ORFs). Genomic comparison analysis revealed that most of the ORFs were similar to Enterobacteria phage Phi1 and RB49. However, ORF147 and ORF148 putative DNA methylase family protein is less than 67% homology with already published phages. In addition, the phylogenetic analysis of terminates large subunit showed that it belongs to a new branch and shows less than 50 similarities to reported phages. There is no lysogenic, toxin or antibiotic-resistant related gene was found in the genome of vB_EcoM_011D4. In summary, vB_EcoM_011D4 is a newly discovered phage, which can be further studied for elucidating the phage diversity and it is benefits for the wide application of phage therapy.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhihua Xu ◽  
Jiaqing Shen ◽  
Shangbo Hua ◽  
Daiwei Wan ◽  
Qian Chen ◽  
...  

Abstract Background Our previous study had proved that nigericin could reduce colorectal cancer cell proliferation in dose- and time-dependent manners by targeting Wnt/β-catenin signaling. To better elucidate its potential anti-cancer mechanism, two pancreatic cancer (PC) cell lines were exposed to increasing concentrations of nigericin for different time periods, and the high-throughput sequencing was performed to explore the circRNA expression profiles after nigericin exposure on pancreatic cancer (PC) cells. Results In this study, a total of 183 common differentially expressed circRNAs were identified, and the reliability and validity of the sequencing data were verified by the PCR analysis. According to the parental genes of circRNAs, the GO analysis was performed to predict the most enriched terms in the biological process, cellular components and molecular functions. The KEGG analysis and pathway-pathway network exhibited the potential signal pathways and their regulatory relationships. Meanwhile, a potential competing endogenous RNA (ceRNA) mechanism through a circRNA-miRNA-mRNA network was applied to annotate potential functions of these common differentially expressed circRNAs, and these predicted miRNAs or mRNAs might be involved in nigericin damage. Conclusions By the bioinformatics method, our data will facilitate the understanding of nigericin in PC cells, and provide new insight into the molecular mechanism of nigericin toward cancer cells. This is the first report that discusses the potential functions of nigericin in cancers through the bioinformatics method. Our data will facilitate the understanding of nigericin-mediated anti-cancer mechanisms in PC.


2019 ◽  
Vol 8 (33) ◽  
Author(s):  
Adrian L. Cookson ◽  
David W. Lacher ◽  
Flemming Scheutz ◽  
David A. Wilkinson ◽  
Patrick J. Biggs ◽  
...  

The use of culture methods to detect Escherichia coli diversity does not provide sufficient resolution to identify strains present at low levels. Here, we target the hypervariable gnd gene and describe a database containing 534 distinct partial gnd sequences and associated O groups for use with culture-independent E. coli community analysis.


2011 ◽  
Vol 3 (111) ◽  
pp. 111ra121-111ra121 ◽  
Author(s):  
S. Roychowdhury ◽  
M. K. Iyer ◽  
D. R. Robinson ◽  
R. J. Lonigro ◽  
Y.-M. Wu ◽  
...  

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1373 ◽  
Author(s):  
Pedro J. Torres ◽  
Erin M. Fletcher ◽  
Sean M. Gibbons ◽  
Michael Bouvet ◽  
Kelly S. Doran ◽  
...  

Clinical manifestations of pancreatic cancer often do not occur until the cancer has undergone metastasis, resulting in a very low survival rate. In this study, we investigated whether salivary bacterial profiles might provide useful biomarkers for early detection of pancreatic cancer. Using high-throughput sequencing of bacterial small subunit ribosomal RNA (16S rRNA) gene, we characterized the salivary microbiota of patients with pancreatic cancer and compared them to healthy patients and patients with other diseases, including pancreatic disease, non-pancreatic digestive disease/cancer and non-digestive disease/cancer. A total of 146 patients were enrolled at the UCSD Moores Cancer Center where saliva and demographic data were collected from each patient. Of these, we analyzed the salivary microbiome of 108 patients: 8 had been diagnosed with pancreatic cancer, 78 with other diseases and 22 were classified as non-diseased (healthy) controls. Bacterial 16S rRNA sequences were amplified directly from salivary DNA extractions and subjected to high-throughput sequencing (HTS). Several bacterial genera differed in abundance in patients with pancreatic cancer. We found a significantly higher ratio ofLeptotrichiatoPorphyromonasin the saliva of patients with pancreatic cancer than in the saliva of healthy patients or those with other disease (Kruskal–Wallis Test;P< 0.001).Leptotrichiaabundances were confirmed using real-time qPCR withLeptotrichiaspecific primers. Similar to previous studies, we found lower relative abundances ofNeisseriaandAggregatibacterin the saliva of pancreatic cancer patients, though these results were not significant at theP< 0.05 level (K–W Test;P= 0.07 andP= 0.09 respectively). However, the relative abundances of other previously identified bacterial biomarkers, e.g.,Streptococcus mitisandGranulicatella adiacens, were not significantly different in the saliva of pancreatic cancer patients. Overall, this study supports the hypothesis that bacteria abundance profiles in saliva are useful biomarkers for pancreatic cancer though much larger patient studies are needed to verify their predictive utility.


Sign in / Sign up

Export Citation Format

Share Document