scholarly journals Design and Implementation of an IoT Based LPG and CO Gases Monitoring System

2021 ◽  
Author(s):  
Otoniel Flores-Cortez ◽  
Ronny Cortez ◽  
Bruno González

Nowadays use of liquefied petroleum gas (LPG) has increased. LPG is an asphyxiating, volatile and highly flammable gas. In a LPG leak situation, potential health accidents are increased either by inhalation or by combustion of the gas. On the other hand, carbon monoxide (CO) is a toxic gas that comes mainly from combustion in car engines. Breathing CO-polluted air can cause dizziness, fainting, breathing problems, and sometimes death. To prevent health accidents, including explosions, in open or closed environments, remote and real-time monitoring of the concentration levels of CO and LPG gases has become a necessity. The aim of this work is to demonstrate the use of Internet of Things (IoT) techniques to design and build a telemetry system to monitor in real-time the concentration of GLP and CO gases in the surrounding air. To implement this work, as central hardware there is a microcontroller, CO and PLG sensors on the electronic station. Besides, Amazon Web Services (AWS) was used as an IoT platform and data storage in the cloud. The main result was a telematics system to monitor in real time the concentrations of both GLP and CO gases, whose data is accessible from any device with internet access through a website. Field tests have been successful and have shown that the proposed system is an efficient and low-cost option.

Author(s):  
Husam Kareem

<p>A major issue that happens in kitchens of houses and/or restaurants is the leakage of gas used as a fuel for cooker stove, which is commonly referred to as LPG (liquefied petroleum gas). LPG leakage may lead to a serious fire or even a deadly explosion that might affect the surrounding people. A substantial solution to avoid such disasters is by stopping its main cause. Therefore designing a device capable of monitoring and detecting such gases can minimize the dangerous and unwanted incidents by LPG leakage. This paper introduces a low cost and energy efficient real-time monitoring system that able to sense different dangerous gases, specifically those used for stove cooker. This system considers the pros of the previously introduced systems and fixes the cons available in those systems. In addition, the manufacturing cost has been taken into consideration. If the system senses any type of LPG gas (there is a gas leakage), it will react by making three different actions. It will make an alert sound to notify the people around the leakage place, send an SMS to two cell phones, and show, on an LCD screen, the leakage location.</p>


2021 ◽  
Author(s):  
Nicholas Parkyn

Emerging heterogeneous computing, computing at the edge, machine learning and AI at the edge technology drives approaches and techniques for processing and analysing onboard instrument data in near real-time. The author has used edge computing and neural networks combined with high performance heterogeneous computing platforms to accelerate AI workloads. Heterogeneous computing hardware used is readily available, low cost, delivers impressive AI performance and can run multiple neural networks in parallel. Collecting, processing and machine learning from onboard instruments data in near real-time is not a trivial problem due to data volumes, complexities of data filtering, data storage and continual learning. Little research has been done on continual machine learning which aims at a higher level of machine intelligence through providing the artificial agents with the ability to learn from a non-stationary and never-ending stream of data. The author has applied the concept of continual learning to building a system that continually learns from actual boat performance and refines predictions previously done using static VPP data. The neural networks used are initially trained using the output from traditional VPP software and continue to learn from actual data collected under real sailing conditions. The author will present the system design, AI, and edge computing techniques used and the approaches he has researched for incremental training to realise continual learning.


Irriga ◽  
2017 ◽  
Vol 1 (1) ◽  
pp. 11-20
Author(s):  
Luiz Eduardo Vieira de Arruda ◽  
VLADIMIR BATISTA FIGUEIRÊDO ◽  
SÉRGIO LUIZ AGUILAR LEVIEN ◽  
JOSÉ FRANCISMAR DE MEDEIROS

DESENVOLVIMENTO DE UM TENSIÔMETRO DIGITAL COM SISTEMA DE AQUISIÇÃO E ARMAZENAMENTO DE DADOS LUIZ EDUARDO VIEIRA DE ARRUDA1; VLADIMIR BATISTA FIGUEIRÊDO2; SÉRGIO LUIZ AGUILAR LEVIEN3 E JOSÉ FRANCISMAR DE MEDEIROS4 1Mestre, Doutorando do Programa de Pós Graduação em Manejo de Solo e Água (PPGMSA), bolsista da CAPES; Universidade Federal Rural do Semi-Árido (UFERSA); Av. Francisco Mota, 572; Bairro Costa e Silva; 59.625-900, Mossoró/RN; e-mail: [email protected] de Ciências Ambientais e Tecnológicas (DCAT), UFERSA, Av. Francisco Mota, 572; Bairro Costa e Silva; 59.625-900, Mossoró, RN; e-mail: [email protected]; [email protected]; [email protected]  1 RESUMO Para um bom manejo da água na agricultura faz-se necessário a utilização de instrumentos que auxiliem o agricultor na tomada de decisão, indicando quanto e quando se deve aplicar água às culturas. Em face do exposto, notou-se a necessidade do desenvolvimento de um tensiômetro com sistema de aquisição e armazenamento de dados de forma contínua a baixo custo. O modelo proposto é composto por: cápsula porosa (25 x 11 mm), hastes de acrílico transparente com diâmetros de 12 e 15 mm, tampa de borracha siliconada, mangueira plástica transparente, mangueira de borracha e transdutores de tensão modelo Motorola® MPX 5100AP. Para a construção do sistema de aquisição dos dados foi utilizado uma placa Arduino® modelo MEGA 2560, três capacitores, placa fenolítica, bornes, jumpers, cabo quatro vias, RTC (Real Time Clock) modelo DS1307, display de cristal líquido (16 x 2), módulo de cartão de memória SD card, fonte de computador bivolt para alimentação de todo sistema com tensão de 12 Vcc e caixa plástica para acondicionamento dos circuitos. Como resultado da calibração do transdutor de tensão obteve-se uma equação com R2 igual a 0,9996, apresentando ótimo ajuste de acordo com o valor obtido. Palavras-chave: Arduino, transdutor de tensão, tensão de água no solo  ARRUDA, L. E. V.; FIGUEIRÊDO, V. B.; LEVIEN, S. L. A.; MEDEIROS, J. F.DEVELOPMENT OF A DIGITAL SOIL TENSIOMETER WITH A SYSTEM FOR INPUTTING AND STORING DATA  2 ABSTRACT In order to have a good water management in agricultural processes, it is necessary to use instruments that will assist the farmer in the decision-making processes, indicating how much and when to apply water to the crops. Considering the aforementioned, it was noted the demand of development of a tensiometer in conjunction with a data storage and input system, inputting and storing data continuously and at low cost. The proposed model consists of a porous capsule (25 x 11 mm), clear acrylic tube with diameters of 12 and 15 mm, a silicone rubber cap, a clear plastic hose, a rubber hose and voltage transducers Motorola® MPX5100AP model. In order to create the data system used an Arduino® platform model MEGA 2560, three capacitors, a phenolic sheet, terminals, jumpers, a four-way cable, a Real Time Clock (RTC) model DS1307, a liquid crystal display (16 x 2), a Micro SD memory card module, a dual voltage computer to supply power to the whole system using 12 Vcc voltage and plastic housing to store the circuit. The voltage transducer calibration resulted in an equation meaning that R2 is equal to 0.9996, thus presenting an optimal adjustment according to the obtained value. Keywords: Arduino, voltage transducer, soil water tension


Author(s):  
Sushanta Mohan Rakshit ◽  
Michael Hempel ◽  
Pradhumna Shrestha ◽  
Fahimeh Rezaei ◽  
Hamid Sharif ◽  
...  

Real-time monitoring of various components of a railcar such as wheel bearing temperature, brake line status, integrity of transported goods and many more has become a key focus area of research for the North American freight railroad industry. The ability for timely detection of abnormalities and impending failures prevents costly accidents, the potential loss of life and damage to the environment. Monitoring also increases overall operational efficiency, reliability and safety of freight railroads. Wireless Sensor Networks (WSN) are an obvious choice for implementing such a monitoring scheme. The accumulated data from various sensors distributed throughout each railcar along the length of the train is transmitted wirelessly using multi-hop transmissions to the locomotive for alerting and monitoring. From there, this information is also transmitted to dispatch centers for further analysis and recording. ZigBee technology based on the IEEE 802.15.4 standard is a popular choice among WSN communication protocols, owing to its low cost and low power requirements. ZigBee performance degrades severely in the long chain-like topology characteristic of the railroad application environment. This effectively disqualifies ZigBee as a candidate technology for such railcar monitoring deployments. To overcome these issues with ZigBee deployments for freight train monitoring we developed our Hybrid Technology Networking (HTN) approach [5–7]. HTN leverages both ZigBee and Wi-Fi communication to achieve reliable communication along an entire freight train. Railcar monitoring nodes are grouped into smaller clusters, within which we utilize ZigBee for its low-power operation and report to each cluster’s gateway node. The gateway nodes of all the clusters on a train communicate using Wi-Fi, to benefit from the high throughput and long communication range. This tiered architecture also results in a drastic reduction in overall hop count for end-to-end communication. In this paper we present HTNMote, a hardware platform that we are developing and employing for real-world evaluation of the HTN protocol. We also present results from our field tests of the HTNMotes at the Transportation Technology Center (TTCI) facility in Pueblo, Colorado, operated by the US Association of American Railroads (AAR). The results show that the use of HTN improves performance of the network by at least an order of magnitude compared to a ZigBee-only network. This paper details the design of our HTNMote platform, present the test setup and results, as well as conduct an in-depth analysis of the obtained results as they relate to railroad operations.


2012 ◽  
Vol 433-440 ◽  
pp. 4565-4570
Author(s):  
Guo Sheng Xu

Due to the project in this article, a kind of image capture and processing system based on FPGA is proposed, the low cost high performance FPGA is selected as the main core, the design of the whole system including software and hardware are implemented. The system achieves to functions of the high -speed data collection, the high -speed video data compression the real time video data Network Transmission and the real time compression picture data storage. the data processed was transferred to PC through USB2.0 real-time to reconstruct defects microscopic images. Experimental results prove right and feasible by adopting the algorithm and scheme proposed in this paper.


Author(s):  
Jia Hua-Ping ◽  
Zhao Jun-Long ◽  
Liu Jun

Cardiovascular disease is one of the major diseases that threaten the human health. But the existing electrocardiograph (ECG) monitoring system has many limitations in practical application. In order to monitor ECG in real time, a portable ECG monitoring system based on the Android platform is developed to meet the needs of the public. The system uses BMD101 ECG chip to collect and process ECG signals in the Android system, where data storage and waveform display of ECG data can be realized. The Bluetooth HC-07 module is used for ECG data transmission. The abnormal ECG can be judged by P wave, QRS bandwidth, and RR interval. If abnormal ECG is found, an early warning mechanism will be activated to locate the user’s location in real time and send preset short messages, so that the user can get timely treatment, avoiding dangerous occurrence. The monitoring system is convenient and portable, which brings great convenie to the life of ordinary cardiovascular users.


Author(s):  
Gabriel de Almeida Souza ◽  
Larissa Barbosa ◽  
Glênio Ramalho ◽  
Alexandre Zuquete Guarato

2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yong He ◽  
Hong Zeng ◽  
Yangyang Fan ◽  
Shuaisheng Ji ◽  
Jianjian Wu

In this paper, we proposed an approach to detect oilseed rape pests based on deep learning, which improves the mean average precision (mAP) to 77.14%; the result increased by 9.7% with the original model. We adopt this model to mobile platform to let every farmer able to use this program, which will diagnose pests in real time and provide suggestions on pest controlling. We designed an oilseed rape pest imaging database with 12 typical oilseed rape pests and compared the performance of five models, SSD w/Inception is chosen as the optimal model. Moreover, for the purpose of the high mAP, we have used data augmentation (DA) and added a dropout layer. The experiments are performed on the Android application we developed, and the result shows that our approach surpasses the original model obviously and is helpful for integrated pest management. This application has improved environmental adaptability, response speed, and accuracy by contrast with the past works and has the advantage of low cost and simple operation, which are suitable for the pest monitoring mission of drones and Internet of Things (IoT).


Sign in / Sign up

Export Citation Format

Share Document