scholarly journals Quantile Regressive Fish Swarm Optimized Deep Convolutional Neural Learning for Reliable Data Transmission in IoV

2021 ◽  
Vol 13 (2) ◽  
pp. 81-97
Author(s):  
S. Suguna Devi ◽  
A. Bhuvaneswari

Route path identification on the Internet of Vehicles (IoV) is complicated due to the nature of high dynamic mobility, bandwidth constraints, and traffic load. A vehicle present on the IoV communicates with each other to find the status of the road and location of other vehicles for reliable data transmission. However, the existing routing algorithm does not effectively improve the packet delivery ratio and reduce the delay. To resolve these issues, A Quantile Regressive Fish Swarm Optimized Deep Convolutional Neural Learning (QRFSODCNL) technique is introduced reliable data transmission with minimum end to end delay in IoV. The Do Convolutional Neural Learning uses multiple layers such as one input layer, three hidden layers, and one output layer for vehicle location identification and optimal route path discovery. The different node characteristics of vehicle nodes are analyzed in the hidden layers using the quantile regression function. Depends on the regression analysis, the neighbouring node is identified with minimal time. To improve the throughput and reduce the packet loss rate, the artificial fish swarm optimization technique is applied to choose the best route among the population based on the fitness function. Simulation is carried out to analyze the performance of QRFSODCNL technique and existing methods with different metrics such as packet delivery ratio, packet loss rate, average end to end delay, and throughput. The discussed outcome proves that the QRFSODCNL technique outperforms well as compared to the stateof-the-art methods.

2021 ◽  
Author(s):  
N. Muruganandam ◽  
V. Venkatraman ◽  
R. Venkatesan

Abstract WSN includes a scenario where huge amount of sensor nodes are distributed to monitor environmental conditions with route collected data towards sinks via the internet. WSNs efficiently manage the wider network with available resources, such as residual energy and wireless channel bandwidth. Therefore, routing algorithm is important to enhance battery-constrained networks. Many existing techniques are developed for balancing consumption of energy but efficient routing was not achieved. Multivariate Weighted Isotonic Regressive Modest Adaptive Boosting based Resource Aware Routing (MWIRMAB-RAR) technique is introduced for enhancing routing. The MWIRMAB-RAR technique includes a different process namely resource-aware node selection, route path discovery, and data transmission. Initially, the MWIRMAB-RAR technique uses the Modest Adaptive Boosting technique uses the Multivariate Weighted Isotonic Regression function for detecting resource-efficient sensor nodes for effective data transmission. After that, multiple route paths are established based on the time of flight method. After establishes route path, source node sends data packets to sink node via resource-efficient nodes. The data delivery was enhanced and minimizes packet loss as well as delay. The simulation analysis is carried out on certain performance factors such as energy consumption, packet delivery ratio, packet loss rate, and delay with number of data packets and sensor nodes. The obtained evaluation indicates MWIRMAB-RAR outperforms well in terms of increasing data packet delivery and reduces consumption of energy, packet loss rate, and delay.


Author(s):  
Subhasis Dash ◽  
Saras Kumar ◽  
Manas Ranjan Lenka ◽  
Amulya Ratna Swain

A wireless sensor network is a collection of batterypowered sensor nodes distributed in a geographical area. Inmany applications, such networks are left unattended for along period of time. These networks suffer from the problemslike high energy consumption, high latency time, and end- to-end low packet delivery ratio. To design a protocol that findsa trade-off between these problems is a challenging task. Inorder to mitigate energy consumption issue, different existingMedia Access Control (MAC) protocols such as S-MAC, RMAC,HEMAC, and Congestion-less Single Token MAC protocols havebeen proposed which ensure better packet delivery but fail toensure energy efficiency due to high end-to-end latency. Theproblem of high end-to-end latency is resolved with the existingrouting protocols such as Fault Tolerant Multilevel Routingprotocol (FMS)and Enhanced Tree Routing (ETR) protocol.AS2-MAC and Multi Token based MAC protocol are able toimprove the end-to-end packet delivery ratio. However, thehierarchical network structure used in these protocols increasestime and energy consumption during network reconstruction.This problem was further resolved in Distributed HierarchicalStructure Routing protocol by constructing the network structurein a distributed manner. In all these existing protocols, efficienttoken management and reliable data delivery ratio was notproperly addressed, which in turn consume more energy. So,it is clear that MAC and routing protocols both together cangive better results related to data transmission in WSN. Inorder to achieve the same, in this paper, we propose a reliabledata transmission algorithm that satisfies both routing and MACprotocol to improve the end-to-end data delivery. The proposedprotocol uses different control message exchange that ensures datapacket delivery in each individual levels and it ultimately uses oftokens to ensure reliable data transmission along with reducedtraffic congestion during end-to-end data delivery. The algorithmconsiderably improves the packet delivery ratio along with reduceenergy consumption of each sensor node. Simulation studies ofthe proposed approach have been carried out and its performancehas been compared with the Multi Token based MAC protocol,AS-MAC protocol and ETR routing protocol. The experimentalresults based on simulation confirms that the proposed approachhas a higher data packet delivery ratio.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Saneh Lata Yadav ◽  
R. L. Ujjwal ◽  
Sushil Kumar ◽  
Omprakash Kaiwartya ◽  
Manoj Kumar ◽  
...  

Congestion in wireless sensor networks (WSNs) is an unavoidable issue in today’s scenario, where data traffic increased to its aggregated capacity of the channel. The consequence of this turns in to overflowing of the buffer at each receiving sensor nodes which ultimately drops the packets, reduces the packet delivery ratio, and degrades throughput of the network, since retransmission of every unacknowledged packet is not an optimized solution in terms of energy for resource-restricted sensor nodes. Routing is one of the most preferred approaches for minimizing the energy consumption of nodes and enhancing the throughput in WSNs, since the routing problem has been proved to be an NP-hard and it has been realized that a heuristic-based approach provides better performance than their traditional counterparts. To tackle all the mentioned issues, this paper proposes an efficient congestion avoidance approach using Huffman coding algorithm and ant colony optimization (ECA-HA) to improve the network performance. This approach is a combination of traffic-oriented and resource-oriented optimization. Specially, ant colony optimization has been employed to find multiple congestion-free alternate paths. The forward ant constructs multiple congestion-free paths from source to sink node, and backward ant ensures about the successful creation of paths moving from sink to source node, considering energy of the link, packet loss rate, and congestion level. Huffman coding considers the packet loss rate on different alternate paths discovered by ant colony optimization for selection of an optimal path. Finally, the simulation result presents that the proposed approach outperforms the state of the art approaches in terms of average energy consumption, delay, and throughput and packet delivery ratio.


Author(s):  
Irma Nurlita Dewi ◽  
Rendy Munadi ◽  
Leanna Vidya Y.

Vehicular Ad hoc Network (VANET) merupakan konsep subset dari Mobile Ad hoc Networks (MANET) sebagai teknologi yang memungkinkan komunikasi Inter Vehicle Communication (IVC) dan Roadside-toVehicle (RVC).VANET dikarakteristikkan dengan membangun jaringan ad hoc yang dibentuk dari nodenode berupa kendaraan bermobilitas tinggi yang dibatasi dengan aturan lalu lintas sehingga pergerakannya disesuaikan dengan pola tertentu, tidak seperti MANET yang pergerakannya bisa random tanpa ada batasan. Dengan demikian, protokol routing konvensional berbasis topologi pada MANET dinilai tidak cocok untuk VANET. Protokol routing berbasis posisi sepeti GPSR dan GyTAR dinilai cocok untuk VANET. Hal ini tak lain karena aspek dinamika topologi pada VANET yang dapat berdampak nyata pada analisis protokol routing. Dari hasil simulasi diperoleh bahwa GyTAR unggul pada skenario lingkungan perkotaan dilihat dari seluruh parameter end-to-end delay, packet delivery ratio, packet loss dan normalized routing overhead yang lebih baik dari GPSR dengan rata-rata nilai masing-masing, yakni 2,294 ms, 0,958, 4,19%, dan 0,482. Sementara pada skenario lingkungan jalan tol GPSR lebih unggul dibandingkan GyTAR dengan rata-rata nilai end-to-end delay, packet delivery ratio, dan packet loss sebesar 2,639 ms, 0,920, dan 7,923%; namun dengan perolehan NRO yang lebih kecil oleh GyTAR, yakni sebesar 1,725.Kata Kunci: VANET, MANET , GPSR, GyTAR, IVC, SUMO


2020 ◽  
Vol 13 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Neha Sharma ◽  
Sherin Zafar ◽  
Usha Batra

Background: Zone Routing Protocol is evolving as an efficient hybrid routing protocol with an extremely high potentiality owing to the integration of two radically different schemes, proactive and reactive in such a way that a balance between control overhead and latency is achieved. Its performance is impacted by various network conditions such as zone radius, network size, mobility, etc. Objective: The research work described in this paper focuses on improving the performance of zone routing protocol by reducing the amount of reactive traffic which is primarily responsible for degraded network performance in case of large networks. The usage of route aggregation approach helps in reducing the routing overhead and also help achieve performance optimization. Methods: The performance of proposed protocol is assessed under varying node size and mobility. Further applied is the firefly algorithm which aims to achieve global optimization that is quite difficult to achieve due to non-linearity of functions and multimodality of algorithms. For performance evaluation a set of benchmark functions are being adopted like, packet delivery ratio and end-to-end delay to validate the proposed approach. Results: Simulation results depict better performance of leading edge firefly algorithm when compared to zone routing protocol and route aggregation based zone routing protocol. The proposed leading edge FRA-ZRP approach shows major improvement between ZRP and FRA-ZRP in Packet Delivery Ratio. FRA-ZRP outperforms traditional ZRP and RA-ZRP even in terms of End to End Delay by reducing the delay and gaining a substantial QOS improvement. Conclusion: The achievement of proposed approach can be credited to the formation on zone head and attainment of route from the head hence reduced queuing of data packets due to control packets, by adopting FRA-ZRP approach. The routing optimized zone routing protocol using Route aggregation approach and FRA augments the QoS, which is the most crucial parameter for routing performance enhancement of MANET.


Author(s):  
RENDI DIAN PRASETIA ◽  
DOAN PERDANA ◽  
RIDHA MULDINA NEGARA

ABSTRAKSalah satu permasalahan di kota-kota besar adalah kemacetan lalu lintas yang disebabkan karena tidak mencukupinya ruas jalan, volume kendaraan yang begitu besar, persebaran kendaraan yang tidak merata dan lain-lain. Salah satu solusinya adalah para pengendara dapat menggunakan aplikasi peta digital pada smartphone-nya. Oleh karena itu perlu dilakukan pengimbangan beban trafik kendaraan. Pada penelitian ini akan dibahas mengenai kinerja VANET yang menggunakan protokol routing GPSR dan AODV dengan skema pengimbangan beban trafik kendaraan dengan pengaruh kepadatan node. Perancangan sistem simulasi terbagi menjadi dua subsistem yaitu subsistem mobilitas dan jaringan. Kemudian dilakukan pengimbangan beban trafik kendaraan, dan kinerja VANET akan diamati. Performansi dievaluasi dengan average end to end delay, throughput, dan packet delivery ratio. Nilai rata-rata throughput, PDR, delay untuk GPSR adalah 142.21 Kbps, 87.47 %, dan 82.83 ms. Sedangkan AODV adalah 119.81 Kbps, 86.67 %, dan 103.21 ms. Dari hasil penelitian nilai QoS performansi dari routing protocol GPSR lebih baik dari pada AODV pada VANET.Kata kunci: Vanet, Pengimbangan Beban, GPSR, AODV.ABSTRACTOne of the problems in big cities is congestion. The congestion is caused byinsufficient road segment, large volume of vehicles, unbalanced spread ofvehicles and others. One solution is that riders can use digital map applications on their smartphones. Therefore it is necessary to balancing the traffic load of vehicles. In this research will be discussed about VANET performance using GPSR and AODV routing protocol with vehicle traffic load balancing scheme with node density influence. The design of the simulation system is divided into two subsystems namely mobility and network subsystem. Then balancing the vehicle traffic load, and VANET performance will be observed. Performance is evaluated with the average end to end delay, throughput, and packet delivery ratio. The mean value of throughput, PDR, delay for GPSR respectively 142.21 Kbps, 87.47%, and 82.83 ms. While AODV is 119.81 Kbps, 86.67%, and 103.21 ms. From the simulation results can be concluded that the performance of GPSR is better than AODV on VANET. Keywords: Vanet, Load Balancing, GPSR, AODV.


Author(s):  
Geetanjali Rathee ◽  
Hemraj Saini

Secure routing is considered as one of a key challenge in mesh networks because of its dynamic and broadcasting nature. The broadcasting nature of mesh environment invites number of security vulnerabilities to come and affect the network metrics drastically. Further, any node/link failure of a routed path may reduce the performance of the entire network. A number of secure routing protocols have been proposed by different researchers but enhancement of a single network parameter (i.e. security) may affect another performance metrics significantly i.e. throughput, end to end delay, packet delivery ratio etc. In order to ensure secure routing with improved network metrics, a Secure Buffer based Routing Protocol i.e. SBRP is proposed which ensures better network performance with increased level of security. SBRP protocol uses buffers at alternate positions to fasten re-routing mechanism during node/link failure and ensures the security using AES encryption. Further the protocol is analyzed against mAODV protocol in both static and dynamic environment in terms of security, packet delivery ratio, end to end delay and network throughput.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Kehua Zhao ◽  
Yourong Chen ◽  
Siyi Lu ◽  
Banteng Liu ◽  
Tiaojuan Ren ◽  
...  

To solve the problem of sensing coverage of sparse wireless sensor networks, the movement of sensor nodes is considered and a sensing coverage algorithm of sparse mobile sensor node with trade-off between packet loss rate and transmission delay (SCA_SM) is proposed. Firstly, SCA_SM divides the monitoring area into several grids of same size and establishes a path planning model of multisensor nodes’ movement. Secondly, the social foraging behavior of Escherichia coli in bacterial foraging is used. A fitness function formula of sensor nodes’ moving paths is proposed. The optimal moving paths of all mobile sensor nodes which can cover the entire monitoring area are obtained through the operations of chemotaxis, replication, and migration. The simulation results show that SCA_SM can fully cover the monitoring area and reduce the packet loss rate and data transmission delay in the process of data transmission. Under certain conditions, SCA_SM is better than RAND_D, HILBERT, and TCM.


Author(s):  
Muhamad Zaelani Syahrir Ramadhan ◽  
I Wayan Agus Arimbawa ◽  
Moh Ali Albar

Vehicular Ad-hoc Network is the concept of a subset of Mobile Ad-Hoc Networks (MANET) where vehicles act as nodes on the network. Protocol routing is very influential on the performance of the network to deal with challenges related to the rapidly changing network topology. This study analyze the routing performance of the AODV protocol on vanet networks in the district of Cakranegara by analyzing performance results using end to end delay parameters, packet delivery ratio (PDR), throughput, and routing overhead. The average Maximum value at end to end delay is 940.577 ms while the minimum value is 50,065 ms, and the average speed value decreases delay at speed 50 to 30 km / h by 78,314 ms and from 30 to 10 km / hour decreased by 102,827 ms. The maximum average value in the packet delivery ratio is 84.75% while the minimum value is 55.33%, and the average speed value decreases the ratio at the speed of 50 to 30 km / hour by 7.26% and from 30 to 10 km / h has increased by 10.39%. The average maximum value at throughput is 69,553 Kbps while the minimum value is 10.06 Kbps, and the average speed value decreases throughput at speeds of 50 to 30 km / h by 1,065 Kbps and from 30 to 10 km / h decreases amounting to 0.658 Kbps. The average Maximum value on routing overhead is 37,311 bytes while the minimum value is 7,439 bytes, and the average speed value increases at a speed of 50 to 30 km / hour by 1,321 Bytes and from 30 to 10 km / hour decreases by 5,453 Bytes. Key words: AODV, VANET, Routing Protocols, SUMO, NS2.


Author(s):  
Irfan Ahmad ◽  
Fahad Masood ◽  
Arbab Wajid Ullah Khan

In Mobile Ad hoc Networks (MANET) nodes often change their location independently where neither fixed nor centralized infrastructure is present. Nodes communicate with each other directly or via intermediate nodes. The advantages of the MANET layout lead to self-structure and compatibility to most important functions such as traffic distribution and load balancing. Whenever the host moves rapidly in the network the topology becomes updated due to which the structure of MANET varies accordingly. In the literature, different routing protocols have been studied and compared by researchers. Still, there are queries regarding the performance of these protocols under different scenarios. MANETs are not based on a predesigned structure. In this paper, the performance assessment of the Quality of Services (QoS) for different protocols such as Ad hoc On-Demand Distance Vector (AODV), Temporally Ordered Routing Algorithm (TORA) and Zone Routing Protocol (ZRP) in the existence of the various number of communicating nodes is studied. The performance matrices throughput, end – to – end delay and packet delivery ratio are considered for simulations. Ns 2.35 simulator is used for carrying out these simulations. Results are compared for AODV, TORA, and ZRP routing protocols. The results show that AODV and TORA perform well in end – to – end delay as compared to zone routing protocol. Zone routing protocol performs well in packet delivery ratio and throughput as compared to both the other protocols.


Sign in / Sign up

Export Citation Format

Share Document