scholarly journals Magneto-mechanical deformation of \ch{Ni50Mn28Ga22} shape memory alloy

2021 ◽  
Vol 2 (1) ◽  
pp. 20-27
Author(s):  
Šimon Sukup ◽  
Oleg Heczko

This study deals with pseudoplastic deformation of Ni50Mn28Ga22 alloy exhibiting mechanically and magnetically induced crystal reorientation. The new approach was introduced, taking into account crystals with single initial variant as well as nucleation of different orientation. Initially, observations from optical microscope and AFM (atomic force microscope) were correlated with the mechanical measurements from stress-strain machine to characterize boundaries between crystal variants. These observations were subsequently used to clarify the results of the mechanical deformation tests. By magnetizing samples in VSM (vibrating-sample magnetometer), analogous magnetic measurements to mechanical tests were conducted. The two types of measurements were then compared with respect to energy. The discrepancy found between the model and measurements is in agreement with previous studies. Some experimental factors and possible errors that may affect measurement have been discussed. Nevertheless, the observed differences remain an unresolved issue suggesting a need for a modification of the model.

2018 ◽  
Author(s):  
Oberon Dixon-Luinenburg ◽  
Jordan Fine

Abstract In this paper, we demonstrate a novel nanoprobing approach to establish cause-and-effect relationships between voltage stress and end-of-life performance loss and failure in SRAM cells. A Hyperion II Atomic Force nanoProber was used to examine degradation for five 6T cells on an Intel 14 nm processor. Ten minutes of asymmetrically applied stress at VDD=2 V was used to simulate a ‘0’ bit state held for a long period, subjecting each pullup and pulldown to either VDS or VGS stress. Resultant degradation caused read and hold margins to be reduced by 20% and 5% respectively for the ‘1’ state and 5% and 2% respectively for the ‘0’ state. ION was also reduced, for pulldown and pullup respectively, by 4.5% and 5.4% following VGS stress and 2.6% and 33.8% following VDS stress. Negative read margin failures, soft errors, and read time failures all become more prevalent with these aging symptoms whereas write stability is improved. This new approach enables highly specific root cause analysis and failure prediction for end-of-life in functional on-product SRAM.


Nanoscale ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 4213-4220
Author(s):  
Tatsuhiro Maekawa ◽  
Takashi Nyu ◽  
Evan Angelo Quimada Mondarte ◽  
Hiroyuki Tahara ◽  
Kasinan Suthiwanich ◽  
...  

We report a new approach to visualize the local distribution of molecular recognition sites with nanoscale resolution by amplitude-modulation atomic force microscopy.


2013 ◽  
Author(s):  
Sangmin An ◽  
Corey Stambaugh ◽  
Soyoung Kwon ◽  
Kunyoung Lee ◽  
Bongsu Kim ◽  
...  

2016 ◽  
Vol 857 ◽  
pp. 79-82
Author(s):  
Roslina Ismail ◽  
Fuaida Harun ◽  
Azman Jalar ◽  
Shahrum Abdullah

This work is a contribution towards the understanding of wire bond integrity and reliability in relation to their microstructural and mechanical properties in semiconductor packaging.The effect of surface roughness and hardness of leadframe on the bondability of Au wedge bond still requires detail analysis. Two type of leadframes namely leadframe A and leadframe B were chosen and scanning electron microscope (SEM) and optical microscope were used to inspect the surface morphology of leadframes and the quality of created Au wedge bond after wire bonding process. It was found that there were significant differences in the surface morphologies between these two leadframes. The atomic force microscopy (AFM) which was utilized to measure the average roughness, Ra of lead finger confirms that leadframe A has the highest Ra with value of 166.46 nm compared to that of leadframe B with value of 85.89 nm. While hardness value of different lead finger from the selected leadframe A and B obtained using Vicker microhardness tester are 180.9 VH and 154.2VH respectively.


2020 ◽  
Vol 70 (12) ◽  
pp. 4525-4531

The potential benefits of magnesium (Mg) over the other non-resorbable biomaterials, especially for orthopedic applications, are obvious. When fully realized, functional bioresorbable implants based on Mg alloys offer the mechanical advantages of a metal combined with the degradable and biological advantages of polymers and biomaterials. <1>In this article we obtained aMg-based prelate alloyed with Ca and Mn. It is known that Mn helps to refine the alloy’s microstructure, which adds to the elasticity of the material. Surface morphology was performed using the optical microscope and the electron microscope while the mechanical tests were performed using the tribometer. Also, the electrochemical tests were executed in the ringer solution. It has been mentioned that the electrochemical resistance is quite low. This study was conducted to determine the corrosion resistance of Mg-Ca-Mn alloys. It has been demonstrated that the addition of Mn refines the microstructure, increases the modulus of elasticity but does not have a qualitative resistance to corrosion.Also, the hardness of the material is quite low in comparison to other pre-alloys of Mg. Keywords: Surface morphology,mechanical tests, electrochemical tests


Mechanik ◽  
2017 ◽  
Vol 90 (11) ◽  
pp. 1060-1062
Author(s):  
Sławomir Spadło ◽  
Wojciech Depczyński ◽  
Piotr Młynarczyk ◽  
Tadeusz Gajewski ◽  
Jarosław Dąbrowa

Microstructure and mechanical tests of welds of thin sheets made from nickel-based super-alloys (Haynes 230 and Hastelloy X) were presented. The welds were made using the resistive-pulse micro-welding method using the WS 7000S device. The micro-hardness of the joints was measured with a Matsuzawa Vickers MX 100 hardness tester at 100 G (0.98 N). Metallographic observations of the prepared micro-sections were performed using the Nikon Eclipse MA200 optical microscope at various magnifications. The metallographic microstructure studies were supplemented by linear analysis of the chemical composition, for which the OXFORD X-MAX electron microscope was applied.


Author(s):  
Mikhail Ihnatouski ◽  
Dmitriy Karev ◽  
Boris Karev ◽  
Jolanta Pauk ◽  
Kristina Daunoravičienė

Introduction: Osteoarthritis is a chronic, progressive disease. The aim of this paper is presenting the AFM investigation of cartilage in relation to the assessment of degenerative changes in the surface of hyaline cartilage. It can be useful in choosing the most effective methods of therapy. Methods: Samples were taken from the cartilage surface of the femoral head after its removal during total hip arthroplasty. Images of the surface of the sample were obtained using an optical microscope equipped with a digital video camera, in the reflected light and by atomic force microscopy. Results: The longitudinal orientation of the collagen fibers and sub-fibers beams on the surface, up to a diameter of 50 nm are identified in non-destroyed area sites. Conclusions: Images of the destroyed areas displaying separately passing collagen fibers, strongly exposed to the surface: the size measured and found substructure.


Author(s):  
Surendra Kumar Gupta ◽  
Patricia Iglesias Victoria

Microstructure of annealed plain carbon steels is examined using optical microscopy. When the inter-lamellar spacing in pearlite is small, optical microscope at 1000X is unable to resolve the ferrite and cementite lamellae. In hyper-eutectoid steels, cementite in pearlite appears as darker phase whereas the pro-eutectoid cementite appears as a lighter phase. Atomic force microscopy (AFM) of etched steels is able to resolve ferrite and cementite lamellae in pearlite at similar magnifications. Both cementite in pearlite as well as pro-eutectoid cementite appear as raised areas (hills) in AFM images. Interlamellar spacing in pearlite increases with increasing hardenability of steel.


2021 ◽  
Vol 55 (2) ◽  
pp. 231-235
Author(s):  
Mihailo Mrdak ◽  
Darko Bajić ◽  
Darko Veljić ◽  
Marko Rakin

In this paper we will describe the process of the deposition of thick layers of VPS-Ti coating, which is used as a bonding layer for the upper porous Ti coatings on implant substrates. In order to deposit the powder, we used HÖGANÄS Ti powder labelled as AMPERIT 154.086 -63 µm. In order to test the mechanical properties and microstructure of the VPS-Ti coating, the powder was deposited on Č.4171 (X15Cr13 EN10027) steel substrates. Mechanical tests of the microhardness of the coating were performed by the Vickers hardness test method (HV0.3) and tensile strength by measuring the force per unit area (MPa). The microhardness of the coating is 159 HV0.3, which is consistent with the microstructure. The coating was found to have a good bond strength of 68 MPa. The morphology of the powder particles was examined on a scanning electron microscope. The microstructure of the coating, both when deposited and etched, was examined with an optical microscope and a scanning electron microscope. By etching the coating layers, it was found that the structure is homogeneous and that it consists of a mixture of low-temperature and high-temperature titanium phases (α-Ti + β-Ti). Our tests have shown that the deposited layers of Ti coating can be used as a bonding layer for porous Ti coatings in the production of implants.


Sign in / Sign up

Export Citation Format

Share Document