scholarly journals Physical foundations of using an electric field to improve the accuracy of determining the direction of small angles of deviations

2021 ◽  
pp. 60-65
Author(s):  
Nikolay Pshchelko ◽  
Olga Tsareva

The existing methods of geodetic monitoring of deformations and deviations caused by them are considered. It is shown that due to the instability of the position of the load suspended on a thread in a sufficiently strong electric field, it is possible to measure the direction of deviation of the observed object even when the deviation tends to zero. A quantitative model is considered for calculating the values of the electrical voltages used to ensure the failure-free operation of the device. The main structural elements of the device and a method for recording an information signal are proposed. It is concluded that there are prerequisites for the widespread implementation into practice of devices for determining the direction of small deviations based on the use of an electric field.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Valerie Domcke ◽  
Yohei Ema ◽  
Kyohei Mukaida

Abstract We point out an enhancement of the pair production rate of charged fermions in a strong electric field in the presence of time dependent classical axion-like background field, which we call axion assisted Schwinger effect. While the standard Schwinger production rate is proportional to $$ \exp \left(-\pi \left({m}^2+{p}_T^2\right)/E\right) $$ exp − π m 2 + p T 2 / E , with m and pT denoting the fermion mass and its momentum transverse to the electric field E, the axion assisted Schwinger effect can be enhanced at large momenta to exp(−πm2/E). The origin of this enhancement is a coupling between the fermion spin and its momentum, induced by the axion velocity. As a non-trivial validation of our result, we show its invariance under field redefinitions associated with a chiral rotation and successfully reproduce the chiral anomaly equation in the presence of helical electric and magnetic fields. We comment on implications of this result for axion cosmology, focussing on axion inflation and axion dark matter detection.


2012 ◽  
Vol 109 (8) ◽  
Author(s):  
A. V. Gurevich ◽  
G. A. Mesyats ◽  
K. P. Zybin ◽  
M. I. Yalandin ◽  
A. G. Reutova ◽  
...  

2002 ◽  
Vol 16 (17n18) ◽  
pp. 2529-2535
Author(s):  
R. Tao ◽  
X. Xu ◽  
Y. C. Lan

When a strong electric field is applied to a suspension of micron-sized high T c superconducting particles in liquid nitrogen, the particles quickly aggregate together to form millimeter-size balls. The balls are sturdy, surviving constant heavy collisions with the electrodes, while they hold over 106 particles each. The phenomenon is a result of interaction between Cooper pairs and the strong electric field. The strong electric field induces surface charges on the particle surface. When the applied electric field is strong enough, Cooper pairs near the surface are depleted, leading to a positive surface energy. The minimization of this surface energy leads to the aggregation of particles to form balls.


2010 ◽  
Vol 18 (3) ◽  
Author(s):  
S.G. Gasan-Zade ◽  
M.V. Strikha ◽  
G.A. Shepelskii

AbstractThe intensive far infra-red irradiation in the range of 80–100 μm was observed in uniaxially strained gapless p-Hg1−xCdxTe (MCT) with x = 0.14 in the strong electric field. The inverse occupation in strained MCT is created because the hot electrons distribution occurs in the c-band under impact ionization, while the holes are localized near the v-band top. The probability of band-to-band radiative transition increases dramatically when the acceptor level becomes resonance in the v-band. At threshold values of strain and electric field (P = 2.5–2.7 kbar, E = 50–55 V/cm), increase in irradiation (by 3 orders of magnitude) and increase in current (by 4–6 times) occur.


Sign in / Sign up

Export Citation Format

Share Document