scholarly journals Autophagy impairment as a key feature for acetaminophen-induced ototoxicity

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tong Zhao ◽  
Tihua Zheng ◽  
Huining Yu ◽  
Bo Hua Hu ◽  
Bing Hu ◽  
...  

AbstractMacroautophagy/autophagy is a highly conserved self-digestion pathway that plays an important role in cytoprotection under stress conditions. Autophagy is involved in hepatotoxicity induced by acetaminophen (APAP) in experimental animals and in humans. APAP also causes ototoxicity. However, the role of autophagy in APAP-induced auditory hair cell damage is unclear. In the present study, we investigated autophagy mechanisms during APAP-induced cell death in a mouse auditory cell line (HEI-OC1) and mouse cochlear explant culture. We found that the expression of LC3-II protein and autophagic structures was increased in APAP-treated HEI-OC1 cells; however, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence, and the activity of lysosomal enzymes decreased in APAP-treated HEI-OC1 cells. The degradation of p62 protein and the expression of lysosomal enzymes also decreased in APAP-treated mouse cochlear explants. These data indicate that APAP treatment compromises autophagic degradation and causes lysosomal dysfunction. We suggest that lysosomal dysfunction may be directly responsible for APAP-induced autophagy impairment. Treatment with antioxidant N-acetylcysteine (NAC) partially alleviated APAP-induced autophagy impairment and apoptotic cell death, suggesting the involvement of oxidative stress in APAP-induced autophagy impairment. Inhibition of autophagy by knocking down of Atg5 and Atg7 aggravated APAP-induced ER and oxidative stress and increased apoptotic cell death. This study provides a better understanding of the mechanism responsible for APAP ototoxicity, which is important for future exploration of treatment strategies for the prevention of hearing loss caused by ototoxic medications.

2019 ◽  
Vol 101 (4) ◽  
pp. 686-694 ◽  
Author(s):  
Umma Hafsa Preya ◽  
Jeong-Hwa Woo ◽  
Youn Seok Choi ◽  
Jung-Hye Choi

Abstract The overexpression of hepatocyte nuclear factor-1 beta (HNF1β) in endometriotic lesion has been demonstrated. However, the role of HNF1β in endometriosis remains largely unknown. Human endometriotic 12Z cells showed higher level of HNF1β when compared with normal endometrial HES cells. In human endometriotic 12Z cells, HNF1β knockdown increased susceptibility to apoptotic cell death by oxidative stress, while HNF1β overexpression suppressed apoptosis. In addition, HNF1β knockdown and overexpression significantly decreased and increased, respectively, the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-dependent antiapoptotic genes. Knockdown of the antiapoptotic genes significantly reduced the HNF1β-induced resistance against oxidative stress in 12Z cells. Furthermore, HNF1β regulated the transcriptional activity of NF-κB, and an NF-κB inhibitor suppressed the HNF1β-enhanced NF-κB-dependent antiapoptotic gene expression and the resistance of the 12Z cells against cell death. Taken together, these data suggest that HNF1β overexpression may protect endometriotic cells against oxidative damage by augmenting antiapoptotic gene expression.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 279 ◽  
Author(s):  
Francesco Di Meo ◽  
Rossana Cuciniello ◽  
Sabrina Margarucci ◽  
Paolo Bergamo ◽  
Orsolina Petillo ◽  
...  

Oxidative stress has been associated to neuronal cell loss in neurodegenerative diseases. Neurons are post-mitotic cells that are very sensitive to oxidative stress—especially considering their limited capacity to be replaced. Therefore, reduction of oxidative stress, and inhibiting apoptosis, will potentially prevent neurodegeneration. In this study, we investigated the neuroprotective effect of Ginkgo biloba extract (EGb 761) against H2O2 induced apoptosis in SK-N-BE neuroblastoma cells. We analysed the molecular signalling pathway involved in the apoptotic cell death. H2O2 induced an increased acetylation of p53 lysine 382, a reduction in mitochondrial membrane potential, an increased BAX/Bcl-2 ratio and consequently increased Poly (ADP-ribose) polymerase (PARP) cleavage. All these effects were blocked by EGb 761 treatment. Thus, EGb 761, acting as intracellular antioxidant, protects neuroblastoma cells against activation of p53 mediated pathway and intrinsic mitochondrial apoptosis. Our results suggest that EGb 761, protecting against oxidative-stress induced apoptotic cell death, could potentially be used as nutraceutical for the prevention and treatment of neurodegenerative diseases.


Alcohol ◽  
2019 ◽  
Vol 79 ◽  
pp. 127-135 ◽  
Author(s):  
Ladan Vaghef ◽  
Fereshteh Farajdokht ◽  
Marjan Erfani ◽  
Alireza Majdi ◽  
Saeed Sadigh-Eteghad ◽  
...  

2019 ◽  
Vol 8 (2) ◽  
pp. 216-226 ◽  
Author(s):  
Hizlan Hincal Agus ◽  
Cansin Ogeday Sengoz ◽  
Sedanur Yilmaz

Camphor induces oxidative stress-mediated apoptotic cell death.


Biomaterials ◽  
2011 ◽  
Vol 32 (23) ◽  
pp. 5438-5458 ◽  
Author(s):  
Solaleh Khoramian Tusi ◽  
Leila Khalaj ◽  
Ghorbangol Ashabi ◽  
Mahmoud Kiaei ◽  
Fariba Khodagholi

Sign in / Sign up

Export Citation Format

Share Document