scholarly journals Effect of three different agronomic conditions on biochemical profile and diversity in the rhizosphere of banana plantations infected with Fusarium oxysporum Race 1

2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Katherine Sánchez-Zúñiga ◽  
◽  
Ana Tapia-Fernández ◽  
William Eduardo Rivera-Méndez ◽  
◽  
...  

Soil microorganisms play an important role as a link in the transfer of nutrients from the rhizosphere. The physical and chemical properties of soil, the metabolic profiles of microbial communities and different crop management practices can enhance our understanding of hizospheric interactions. This study aimed to establish differences in microbial communities associated with banana crops and the biochemical profile in farms under different agronomic conditions. Seven farms with different levels of intervention, management, and fusariosis severity were analyzed. The biochemical profile of the microbial community was determined using EcoPlates and the main substrates consumed by the microbial communities were identified through multivariate principal component analysis (PCA). Seven microorganisms were selected as indicators of nutrient cycles, pathogenicity and soil health. Also, soil chemical indicators were determined through a complete mineral analysis. For the physiological profile of soil microbial populations, it was observed that farms with the same management tend to be metabolically very similar. In the PCA, two principal components explained 90 % of the variance in the data. It was also determined that the genus Bacillus is predominant in all farms and that farm 4 (medium intervention) presented the most favorable values in all factors analyzed. The effective cation exchange capacity values are highlighted in the chemical analyses, which determined that all farms have a high fertility level. The metabolic profile, diversity and richness of each of the different farms were affected by the type of agronomic management used.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 395
Author(s):  
Alex J. Lindsey ◽  
Adam W. Thoms ◽  
Marshall D. McDaniel ◽  
Nick E. Christians

Soil health and sustainable management practices have garnered much interest within the turfgrass industry. Among the many practices that enhance soil health and sustainability are applying soil additives to enhance soil biological activity and reducing nitrogen (N) inputs—complimentary practices. A two-year study was conducted to investigate if reduced N fertilizer rates applied with humic substances could provide comparable turfgrass quality as full N rates, and whether humic fertilizers would increase biological aspects of soil health (i.e., microbial biomass and activity). Treatments included synthetic fertilizer with black gypsum (SFBG), poly-coated humic-coated urea (PCHCU; two rates), urea + humic dispersing granules (HDG; two rates), urea, stabilized nitrogen, HDG, and a nontreated control. Reduced rates of N with humic substances maintained turfgrass quality and cover, and reduced clipping biomass compared to full N rates. There were no differences in soil physical and chemical properties besides soil sulfur (S) concentration. SFBG resulted in the highest soil S concentration. Fertilizer treatments had minimal effect on microbial biomass and other plant-available nutrients. However, PCHCU (full rate) increased potentially mineralizable carbon (PMC) and N (PMN) by 68% and 59%, respectively, compared to the nontreated control. Meanwhile SFBG and stabilized nitrogen also increased PMC and PMN by 77% and 50%, and 65% and 59%, respectively. Overall, applications of reduced N fertilizer rates with the addition of humic substances could be incorporated into a more sustainable and environmentally friendly turfgrass fertilizer program.


Author(s):  
Landing Biaye ◽  
Fary Diome ◽  
Seybatou Diop ◽  
Modou Mbaye ◽  
Djibril Tine ◽  
...  

The locality of Nioro du Rip is facing intense erosion, loss of agricultural land, soil pollution and soil degradation. Today, there is limited information about the soil physical and chemical properties in the locality. In this work, we describe the main essential factors or mechanism that control the evolution of the soil in the study area. The physical and chemical properties of soils encountered along a NE-SW transect in are analyzed in this paper. The statistical analysis results revealed low structural stability of soils in general, due to their low organic matter content and exchangeable bases and their predominantly silty texture. A net trend towards acidification, which is more pronounced in the lower-bottom and terrace soils, provides information on the conditions that are increasingly unfavorable to agricultural development. The multivariate principal component analysis (PCA) identified the preponderance of two factors among the four primarily involved in soil geochemical composition. These include a mineralization process (expressed through the first principal component (PC1), which causes soils to be rich in elements (Ca2+, K+,C, N, MO) controlling their structure and fertility level;  The PC2 axis expresses the spatial differentiation phenomenon of the soil granulometric composition: soils forming cluster poles according to their textural affinity in the projection of the plane formed by these two components , with on one side the sandy-dominated soils of the shallows and terraces and on the other the clay-dominated soils of the plateau and the slope. A clear reversal of textural polarity in the studied topo sequence that must be blamed on the strong water erosion in this area.


2021 ◽  
Vol 2 (1) ◽  
pp. 68-79
Author(s):  
Charu Shahi ◽  
◽  
SS Bargali ◽  
Kiran Bargali ◽  
◽  
...  

The present study has been performed among Central Himalayan agroecosystems (AGEs) to analyze the changes in some physico- chemical properties of soils along four altitudes viz. very low (VLA), low (LA), mid (MA) and high altitude (HA). The AGEs were categorized into three size classes i.e. small, medium, and large based on the regional availability of landholding sizes. Results revealed that the size of the AGEs significantly affected only physical parameters of the soil while chemical parameters remain unaffected, this may be due to the regional similarity in management practices of AGEs which governed by the identical seasonal cropping patterns, local food selectivity and economic status of the peasant. The soil bulk density was recorded maximum at VLA (1.00 g cm-3) and decreased with increasing altitude and sizes of agroecosystem thus the correlations were significant. Water holding capacity depicted positive relation with porosity (r= 0.229, P<0.01) and OC (r= 0.273) while negative relation with silt (r= -0.172), bD (r= -0.221,) and pH (r= -0.081). Soil nitrogen was reported highest at MA in medium sized agroecosystems, during the rainy season (0.287 %) followed by winter (0.257 %) and summer season (0.243 %). Overall maximum soil carbon stock was observed at MA (41.41 t ha-1) > HA (37.85 t ha-1) > LA (33.00 t ha-1) > VLA (30.16 t ha-1). Suitable management practices of higher altitudes reflected as the high fertility of the soil in those regions (SQI= HA> MA> LA> VLA) which must be followed by the farm managers of lower altitudes.


Agropedology ◽  
2019 ◽  
Vol 30 (2) ◽  
Author(s):  
R. Srinivasan ◽  
◽  
R. Vasundhara ◽  
M. Lalitha ◽  
B. Kalaiselvi ◽  
...  

Four typical pedons representing major mango growing soils, developed from granite gneiss parent material were studied for their morphological, physical and chemical properties. The soils were moderately shallow (50-75 cm) to very deep (>150 cm) in depth, loamy sand to sandy clay loam in texture, sub-angular blocky in structure, reddish brown to dark red in colour, slightly acidic to moderately alkaline in reaction, non-saline, very low to high in organic carbon content (0.09 to 1.29%), low AWC (3.36 to 7.80%), low to medium in cation exchange capacity (2.90 to 19.36 cmol (p+) kg-1) and high base saturation (78 to 98%). The soils also had high amounts of coarse fragments in P1 and P2 and high clay content in P4 and P2. Among the exchangeable cations, calcium was found to be high in most of the soils, followed by magnesium, sodium, and potassium. Based on the soil characteristics, the mango growing soils were classified as Typic Haplargids and Typic Paleargids in subgroup level. Varying soil and site characters i.e., poor rainfall, shallow soil depths, excess gravel contents, low AWC, poor nutrient status and severe soil erosion are limiting the growth and development of mango plantation. Developing site-specific soils based suitable management practices can improve the productivity of mango crops.


Soil Research ◽  
2015 ◽  
Vol 53 (5) ◽  
pp. 494 ◽  
Author(s):  
Mohsen Barin ◽  
Nasser Aliasgharzad ◽  
Pål Axel Olsson ◽  
MirHassan Rasouli-Sadaghiani

Lake Urmia in north-western Iran is one of the largest hypersaline lakes in the world, and agricultural production in the surrounding area is limited by soil salinity. We investigated the effects of salinity on belowground microbial communities in soils collected from fields of cultivated onions (Allium cepa L.) and lucerne (Medicago sativa L.), and sites with the native halophyte samphire (Salicornia europaea L.). We tested the hypotheses that salinity reduces microbial biomass and changes the structure of the microbial community. The physical and chemical properties of soil samples were analysed, and phospholipid fatty acids were identified as signatures for various microbial groups. We found that the organic carbon (OC) content was the dominant determinant of microbial biomass. We also found linear relationships between OC and the biomass of various groups of organisms across the wide salinity gradient studied. Salinity, on the other hand, caused changes in the microbial fatty acid composition that indicated adaptation to stress and favoured saprotrophic fungi over bacteria, and Gram-negative bacteria over Gram-positive. Principal component analysis showed that salinity variables and microbial stress indices formed one group, and OC and microbial biomass another. The importance of OC for high microbial biomass in severely stressed soils indicates that OC amendment may be used to mitigate salt stress and as a method of managing saline soils.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Ed-Haun Chang ◽  
Isheng Jason Tsai ◽  
Shih-Hao Jien ◽  
Guanglong Tian ◽  
Chih-Yu Chiu

Biogeographic separation has been an important cause of faunal and floral distribution; however, little is known about the differences in soil microbial communities across islands. In this study, we determined the structure of soil microbial communities by analyzing phospholipid fatty acid (PLFA) profiles and comparing enzymatic activities as well as soil physio-chemical properties across five subtropical granite-derived and two tropical volcanic (andesite-derived) islands in Taiwan. Among these islands, soil organic matter, pH, urease, and PLFA biomass were higher in the tropical andesite-derived than subtropical granite-derived islands. Principal component analysis of PLFAs separated these islands into three groups. The activities of soil enzymes such as phosphatase, β-glucosidase, and β-glucosaminidase were positively correlated with soil organic matter and total nitrogen. Redundancy analysis of microbial communities and environmental factors showed that soil parent materials and the climatic difference are critical factors affecting soil organic matter and pH, and consequently the microbial community structure.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1652
Author(s):  
Péter Csontos ◽  
Márton Mucsi ◽  
Péter Ragályi ◽  
Júlia Tamás ◽  
Tibor Kalapos ◽  
...  

Organisms with different life histories are able to act as indicators of different characteristics of their environment. Here, we compared the precision of habitat indication by the vegetation and soil microbial communities in four salt-affected pastures: annual open salt sward, Pannonic Puccinellia limosa hollow, Artemisia saline puszta and grassy saline puszta. Dissimilarity of habitats was evaluated by standardized principal component analysis (PCA) based on four different datasets: catabolic profiles of microbial communities in June (a) and September (b), composition of vascular vegetation (c) and physical and chemical properties of the soil (d). Procrustes analysis was used to quantify the resemblance between pairs of PCA ordinations based on soil properties (d) and various biotic communities (a, b, c). PCA ordination based on vegetation most closely matched the soil data-based ordination, thus vegetation appears to better indicate habitat conditions than soil microbial communities do. For microbial communities, a better agreement with the soil data-based ordination was reached in September than in June. Most probably, the long-lived sedentary habit of perennial plants in these communities requires adaptation to long-term average habitat conditions. In contrast, short-lived soil microbes can quickly follow environmental changes, thus the composition of soil microbial communities better reflect actual soil conditions.


Soil Research ◽  
1998 ◽  
Vol 36 (5) ◽  
pp. 809 ◽  
Author(s):  
M. J. Bell ◽  
P. W. Moody ◽  
R. D. Connolly ◽  
B. J. Bridge

The relationships between fractions of soil organic carbon (C) oxidised by varying strengths of potassium permanganate (KMnO4) and important soil physical and chemical properties were investigated for Queensland Ferrosols. These soils spanned a wide range of clay contents (31-83%), pH values (4·4-7·9; 1 : 5 water), and total C contents (12· 1-111 g/kg). Carbon fractions were derived by oxidation with 33 mM (C1), 167 mM (C2), and 333 mM (C3) KMnO4, while organic C and total C were determined by Heanes wet oxidation and combustion, respectively. Aggregate stability was determined by wet sieving soil from the surface crust after 30 min of high intensity (100 mm/h), simulated rainfall on disturbed samples in the laboratory. The proportion of aggregates <0·125 mm (P125) was used as the stability indicator because of the high correlation between this size class and the final rainfall infiltration rate (r2 = 0qa86, n = 42). The soil organic C fraction most closely correlated with P125 was C1 (r2 = 0·79, n = 42). This fraction was also highly correlated with final, steady-state infiltration rates in field situations where there were no subsurface constraints to infiltration (r2 = 0·74, n = 30). Multiple linear regression techniques were used to identify the soil properties determining effective cation exchange capacity (ECEC, n = 89). Most variation in ECEC (R2 = 0 ·72) was accounted for by a combination of C1 (P < 0·0001) and pH (P < 0·0001). These results confirm the very important role played by the most labile (easily oxidised) fraction of soil organic matter (C1) in key components of the chemical and physical fertility of Ferrosols. Management practices which maintain adequate C1 concentrations are essential for sustainable cropping on these soils.


2020 ◽  
Vol 5 (1) ◽  
pp. 573-581
Author(s):  
Kehinde Abodunde Adegbite ◽  
Aruna Olasekan Adekiya ◽  
Ojo Timothy Vincent Adebiyi ◽  
Elizabeth Temitope Alori ◽  
Wutem Sunny Ejue ◽  
...  

AbstractFarmers have not tested their soils for nutrient status and therefore are unaware of the fertility status of their soils. Therefore, a baseline fertility survey of 50 hectares of land of a gravelly Alfisol in the Teaching and Research Farm of Landmark University, Omu-Aran, Kwara State, Nigeria was carried out with a view to identifying soil health constraints and site-specific sustainable land management practices for optimizing crop production. Standard field protocols and laboratory analytical procedures were employed for all sample parameters measured. Results show that the soil textural classes vary from sand to loamy sand, exchangeable acidity, Ca, Mg, K, and Na and the effective cation exchange capacity has the surface and subsurface soil values of 0.0–0.92 and 0.00–0.89 cmol kg−1, 1.6–7.7 and 2.0–5.8 cmol kg−1, 1.2–11.5 and 0.7–8.0 cmol kg−1, 0.09–0.33 and 0.09–0.43 cmol kg−1, 0.0–0.16 and 0.04–0.16 cmol kg−1, 7.2–12.10 and 0.9–12.5 cmol kg−1, respectively. P values lie in the ranges of 2.5–68.9 mg kg−1 and 2.0–37.7 mg kg−1 in the surface and subsurface soils, respectively, organic C values were 0.86–2.81% and 0.68–3.49%, respectively, in the surface and subsurface soils while the values of N were 0.12–0.61% in the surface and 0.11–0.56% subsurface soils. Land evaluation shows that the soils of the project site are very fragile and poor in native fertility. Compound fertilizers low in nitrogen contents but high in phosphorus and potassium are recommended for gravelly Alfisol in a derived savannah ecological zone of the Kwara State, Nigeria to avoid a nutrient imbalance that may create artificial deficiencies of otherwise adequate nutrient elements.


Environments ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 38
Author(s):  
Judith Álvarez ◽  
Elías Afif ◽  
Tomás E. Díaz ◽  
Laura García ◽  
Jose A. Oliveira

Fertilization and mowing affects the physico-chemical properties of soils, as well as the characteristics of the plants growing on them. Changes in the management techniques are causing semi-natural grasslands to disappear all over Europe. These grasslands host a great amount of diversity, thus their conservation is a top priority. This work studies whether the kind of management has an influence on the soil properties and the foliar content in macronutrients in 25 hay meadows located in Picos de Europa (10 in Asturias, 10 in Castilla y León and 5 in Cantabria). Soils at a 0–20 cm depth showed a high content of organic matter and a low C/N ratio. Effective cation exchange capacity was adequate for a texture, which varied from sandy clay loam to loam, with an average clay content of 17%. Mean values of foliar nutrient concentrations showed a deficiency in K. In this study, management practices were shown to affect some properties of the soils, namely pH, sand percentage and exchangeable K and Ca, to different extents. The highest values of pH and exchangeable Ca were significantly correlated with the least intensive management.


Sign in / Sign up

Export Citation Format

Share Document