Machine Learning Acoustic Emission Based Monitoring of Cold Forging for Smart Manufacturing: A Review
Cold forging is a high-speed forming technique used to shape metals at near room temperature. and it allows high-rate production of high strength metal-based products in a consistent and cost-effective manner. However, cold forming processes are characterized by complex material deformation dynamics which makes product quality control difficult to achieve. There is no well defined mathematical model that governs the interactions between a cold forming process, material properties, and final product quality. The goal of this work is to provide a review for the state of research in the field of using acoustic emission (AE) technology in monitoring cold forging process. The integration of AE with machine learning (ML) algorithms to monitor the quality is also reviewed and discussed. It is realized that this promising technology didn’t receive the deserving attention for its implementation in cold forging and that more work is needed.