scholarly journals Viability of lactic acid bacteria in different components of Ogi with anti diarrhoeagenic E. coli activities

Author(s):  
Roseline Eleojo Kwasi ◽  
Iyanuoluwa Gladys Aremu ◽  
Qudus Olamide Dosunmu ◽  
Funmilola A. Ayeni

Background: Ogi constitutes a rich source of lactic acid bacteria (LAB) with associated health benefits to humans through antimicrobial activities. However, the high viability of LAB in Ogi and its supernatant (Omidun) is essential. Aims: This study was carried out to assess the viability of LAB in various forms of modified and natural Ogi and the antimicrobial properties of Omidun against diarrhoeagenic E coli. Methods and Material: The viability of LAB was assessed in fermented Ogi slurry and Omidun for one month and also freeze-dried Ogi with and without added bacterial strains for two months. A further 10 days viability study of modified Omidun, refrigerated Omidun, and normal Ogi was performed. The antimicrobial effects of modified Omidun against five selected strains of diarrhoeagenic E. coli (DEC) were evaluated by the co-culture method. Results: Both drying methods significantly affected carotenoids and phenolic compounds. The Ogi slurry had viable LAB only for 10 days after which, there was a succession of fungi and yeast. Omidun showed 2 log10cfu/ml reduction of LAB count each week and the freeze-dried Ogi showed progressive reduction in viability. Refrigerated Omidun has little viable LAB, while higher viability was seen in modified Omidun (≥2 log cfu/ml) than normal Omidun. Modified Omidun intervention led to 2-4 log reduction in diarrhoeagenic E. coli strains and total inactivation of shigella-toxin producing E. coli H66D strain in co-culture. Conclusions: The consumption of Ogi should be within 10 days of milling using modified Omidun. There are practical potentials of consumption of Omidun in destroying E. coli strains implicated in diarrhea. Keywords: Ogi, Omidun, lactic acid bacteria, diarrhoeagenic Escherichia coli strains, Viability.

2021 ◽  
Vol 13 (1) ◽  
pp. 122-127
Author(s):  
Ayomide F. Sowemimo ◽  
Abiola O. Obisesan ◽  
Funmilola A. Ayeni

Kunu is a non-alcoholic fermented cereal beverage consumed primarily as a refreshing drink. This study investigated the effects of storage conditions on viability of Lactic Acid Bacteria (LAB) in kunu and the antibacterial effects of Kunu against diarrhoea caused by Escherichia coli strains. Kunu was prepared according to local traditional method. Viability counts of LAB in kunu stored at two different conditions, cold (4 ℃ average) and room temperature (26 ℃ average), were evaluated. Isolated LAB from kunu were identified by partial sequencing of 16S rRNA gene. Five pathotypes of diarrhoea caused by E. coli strains were co-cultured with kunu to evaluate its antimicrobial activities. Viable LAB count in kunu ranged from 5.0 x 109 to 1.0 x 1011 cfu/mL. Pediococcus pentosaceus, Lactobacillus plantarum and Leuconostoc pseudomesenteroides were identified from kunu. There is a drastic decrease (2-5 log reduction) in E. coli strains co-cultured with kunu. The observed high viable counts of beneficial LAB in kunu with its antimicrobial activities against diarrhoeaogenic E. coli strains indicates that kunu is not just a refreshing drink, but it also has antimicrobial potential against diarrhoea caused by E. coli.


2018 ◽  
Vol 9 (7) ◽  
pp. 3688-3697 ◽  
Author(s):  
C. Luz ◽  
L. Izzo ◽  
G. Graziani ◽  
A. Gaspari ◽  
A. Ritieni ◽  
...  

The aim of this study was to evaluate the biological and antimicrobial activities of commercial freeze-dried whey fermented by lactic acid bacteria in order to valorize this high polluting liquid waste of the dairy industry.


2019 ◽  
Vol 68 (2) ◽  
pp. 203-209 ◽  
Author(s):  
FOLASHADE GRACE ADEOSHUN ◽  
WERNER RUPPITSCH ◽  
FRANZ ALLERBERGER ◽  
FUNMILOLA ABIDEMI AYENI

The composition of vagina lactic acid bacteria (LAB) differs within the different ethnic group. This study is aimed at determining the prevalence of LAB with their antimicrobial properties in Nigerian women’s vagina during different stages of the menstrual cycle. Microorganisms were isolated from vaginal swabs of ten Nigerian women during different stages of the menstrual cycle and identified by partial sequencing of the 16S rRNA gene. The antimicrobial properties of the LAB were tested against the multidrug-resistant uropathogens. The prevalence of LAB was higher during ovulation period while during menstruation period, it declined. Twenty-five LAB isolates were identified as three species, namely: Lactobacillus plantarum (15), Lactobacillus fermentum (9), Lactobacillus brevis (1) and one acetic acid bacteria – Acetobacter pasteurianus. The LAB had antimicrobial activities against the three uropathogens with zones of inhibition from 8 to 22 mm. The presence of LAB inhibits the growth of Staphylococcus sp. GF01 also in the co-culture. High LAB counts were found during ovulation period with L.plantarum as a dominant species while during menstruation, there was a decrease in the LAB counts. The isolated LAB has antimicrobial properties against the urogenital pathogens tested thus exhibiting their potential protective role against uropathogens.


Author(s):  
Svetlana Noskova ◽  
Svetlana Ivanova ◽  
Alexander Prosekov ◽  
Lyubov Dyshlyuk ◽  
Elena Ulrikh ◽  
...  

Bacteriocins are of great interest as potential antimicrobial agents against various types of bacteria, fungi, and viruses. Isolates of microorganisms derived from natural sources were used in the current study, including lactic acid bacteria and other antagonistic microorganisms. The species of the microorganisms were determined using 16S rDNA and ITS nrDNA analyses. E. coli, S. enterica, S. aureus, P. aeruginosa, B. mycoides, A. faecalis, P. vulgaris, S. flexneri , L. monocytogenes, C. albicans, A. flavus, and P. citrinum were used as pathogenic and opportunistic strains. It was found that 11 strains of antagonistic microorganisms have significant antimicrobial activity against all pathogenic and opportunistic microorganisms. The antimicrobial properties of these microorganisms are currently under study.


2009 ◽  
Vol 72 (6) ◽  
pp. 1234-1247 ◽  
Author(s):  
ALENA G. BOROWSKI ◽  
STEVEN C. INGHAM ◽  
BARBARA H. INGHAM

Beef jerky has been linked to multiple outbreaks of salmonellosis and Escherichia coli O157:H7 infection over the past 40 years. With increasing government scrutiny of jerky-making process lethality, a simple method by which processors can easily validate the lethality of their ground-and-formed beef jerky process against Salmonella and E. coli O157:H7 is greatly needed. Previous research with whole-muscle beef jerky indicated that commercial lactic acid bacteria (LAB) may be more heat resistant than Salmonella and E. coli O157:H7, suggesting the potential use of LAB as pathogen surrogates. Of six commercial LAB-containing cultures evaluated for heat resistance in ground-and-formed beef jerky, Saga 200 (Pediococcus spp.) and Biosource (Pediococcus acidilactici) were identified as consistently more heat resistant than Salmonella and E. coli O157:H7. Six representative ground-and-formed beef jerky commercial processes, differing widely in lethality, were used to identify an appropriate level of LAB reduction that would consistently indicate a process sufficiently lethal (≥5.0-log reduction) for Salmonella and E. coli O157:H7. Both Saga 200 and Biosource consistently predicted adequate process lethality with a criterion of ≥5.0-log reduction of LAB. When either LAB decreased by ≥5.0 log CFU, processes were sufficiently lethal against Salmonella and E. coli O157:H7 in 100% of samples (n = 39 and 40, respectively). Use of LAB as pathogen surrogates for ground-and-formed beef jerky process validation was field tested by three small meat processors, who found this technique easy to use for process validation.


2005 ◽  
Vol 68 (8) ◽  
pp. 1587-1592 ◽  
Author(s):  
L. SMITH ◽  
J. E. MANN ◽  
K. HARRIS ◽  
M. F. MILLER ◽  
M. M. BRASHEARS

Studies were conducted to determine whether four strains of lactic acid bacteria (LAB) inhibited Escherichia coli O157: H7 and Salmonella in ground beef at 5°C and whether these bacteria had an impact on the sensory properties of the beef. The LAB consisted of frozen concentrated cultures of four Lactobacillus strains, and a cocktail mixture of streptomycin-resistant E. coli O157:H7 and Salmonella were used as pathogens. Individual LAB isolates at 107 CFU/ml were added to tryptic soy broth containing a pathogen concentration of 105 CFU/ml. Samples were stored at 5°C, and pathogen populations were determined on days 0, 4, 8, and 12. After 4 days of storage, there were significant differences in numbers of both pathogens exposed to LAB isolates NP 35 and NP 3. After 8 and 12 days of storage, all LAB reduced populations of both pathogens by an average of 3 to 5 log cycles. A second study was conducted in vacuum-packaged fresh ground beef. The individual LAB isolates resulted in an average difference of 1.5 log cycles of E. coli O157:H7 after 12 days of storage, and Salmonella populations were reduced by an average of 3 log cycles. Following this study, a mixed concentrated culture was prepared from all four LAB and added to ground beef inoculated with pathogen at 108 CFU/g. After 3 days of storage, the mixed culture resulted in a 2.0-log reduction in E. coli O157:H7 compared with the control, whereas after 5 days of storage, a 3-log reduction was noted. Salmonella was reduced to nondetectable levels after day 5. Sensory studies on noninoculated samples that contained LAB indicated that there were no adverse effects of LAB on the sensory properties of the ground beef. This study indicates that adding LAB to raw ground beef stored at refrigeration temperatures may be an important intervention for controlling foodborne pathogens.


2020 ◽  
Vol 13 (1) ◽  
pp. 118-130
Author(s):  
É. Laslo ◽  
É. György ◽  
Cs. D. András

Abstract Acidification in lactic-fermented foods is realized by lactic acid bacteria as an added starter culture or by autochthonous strains. These microbial strains possess different prominent features that define the technological, organoleptic, nutritional, and microbial safety aspects of the product. The bioprotective effect of the bacterial strains may be related to antagonistic properties against food spoilage and/or pathogenic strains. The aim of the present study is to determine the antimicrobial properties of three different food-grade lactic acid bacteria in order to use them as bioprotective cultures. Our findings show that the Lactobacillus pentosus, Enterococcus faecalis, and Pediococcus parvulus exerted a bacteriostatic effect on Escherichia coli and Bacillus cereus, whereas the Saccharomyces cerevisiae growth was not inhibited, which made them susceptible agent for co-culture systems.


2020 ◽  
Vol 8 (8) ◽  
pp. 1182 ◽  
Author(s):  
Egle Zokaityte ◽  
Darius Cernauskas ◽  
Dovile Klupsaite ◽  
Vita Lele ◽  
Vytaute Starkute ◽  
...  

The present research study aims to prepare prototypes of beverages from milk permeate (MP) using fermentation with 10 different strains of lactic acid bacteria (LAB) showing antimicrobial properties (L. uvarum LUHS245, L. casei LUHS210, L. curvatus LUHS51, L. plantarum LUHS135, P. acidilactici LUHS29, L. plantarum LUHS122, L. coryniformins LUHS71, L. paracasei LUHS244, P. pentosaceus LUHS183, L. faraginis LUHS206) and MP with (AppMP) or without (MP) the addition of 8% (w/w) apple by-products (App). Two groups of prototypes of beverages were prepared: fermented MP and fermented MP with App (AppMP). Acidity parameters, LAB viable counts, lactose and galactooligosaccharides (GOSs) content, antimicrobial properties against 15 pathogenic and opportunistic bacterial strains, overall acceptability and emotions induced of the final fermented beverages for consumers were evaluated. Results showed that all LAB grew well in MP and LAB strain exhibited a significant (p ≤ 0.05) influence on galactobiose and galactotriose synthesis in the fermentable MP substrate. The highest total content of GOS (26.80 mg/100 mL) was found in MPLUHS29 fermented beverage. In addition, MPLUHS245, MPLUHS210 and AppMPLUHS71 fermented beverages showed high antimicrobial activity, inhibiting 13 out of 15 tested microbial pathogens. The overall acceptability of AppMP fermented beverages was 26.8% higher when compared with fermented beverages without App (MP), and the most intensive “happy” emotion was induced by MPLUHS71, MPLUHS24, MPLUHS183 and MPLUHS206 samples. Finally, very promising results were also attained by the bioconversion of MP with selected LAB and App addition into the prototypes of antimicrobial beverages enriched with GOS.


2008 ◽  
Vol 71 (7) ◽  
pp. 1366-1371 ◽  
Author(s):  
ANTONIO BEVILACQUA ◽  
FRANCESCA CIBELLI ◽  
DANIELA CARDILLO ◽  
CLELIA ALTIERI ◽  
MILENA SINIGAGLIA

The metabiotic effects of Fusarium proliferatum, F. avenaceum, and F. oxysporum on Escherichia coli O157:H7 and Listeria monocytogenes in fresh tomatoes were investigated. Tomatoes were preinoculated with the molds and incubated at 15°C for 7 days; then they were inoculated separately with the pathogens, packaged in air and modified atmosphere (5% O2, 30% CO2, and 65% N2), and stored at 4, 8, and 12°C for 9 days. The cell loads of pathogens and lactic acid bacteria and the pH were evaluated periodically. The data were modeled through some different mathematical models to assess the shoulder length, i.e., the time before the beginning of the exponential death phase, the 1-log reduction time (δ), and the pathogen death time (δstand). The preinoculation of tomatoes with the molds enhanced the survival of E. coli O157:H7 by prolonging shoulder length and δ parameters; this effect, however, was not observed for L. monocytogenes. pH values did not undergo significant changes within the storage time, and the lactic acid bacteria increased from 5 to 7 log CFU/g, without significant differences among the storage temperatures or the packaging atmospheres. The results of this research showed that the use of fresh tomatoes colonized by fusaria (even if the contamination is not visible) could increase significantly the risk of outbreaks due to some pathogens that could be on the surface of fruits and vegetables as a result of cross-contamination at home or incorrect postharvest operations.


Author(s):  
Hatice Bekci ◽  
Gökçen Yuvalı Çelik ◽  
Dilsad Onbasili

In the study, a total of fifteen Pseudomonas spp. strains were analysed. All the strains were isolated from raw milk samples collected from Kayseri and Nigde provinces in Turkey. Pseudomonas spp. were characterized to species level with the use of analytical profile index. The antimicrobial activity studies were investigated by using agar-well diffusion method. From the results, it was determinated P. aeruginosa and E. coli were significantly inhibited by Pseudomonas strains. Also, It was found that Pseudomonas strains had showed inhibition effect on lactic acid bacteria and lactic acid bacteria had significantly high inhibition effect on Pseudomonas strains.


Sign in / Sign up

Export Citation Format

Share Document