scholarly journals Risk decreasing of water waste through spontaneous fracturing in injectors by integrated well-testing and production logging

2021 ◽  
Vol 6 (4) ◽  
pp. 92-105
Author(s):  
Mikhail I. Kremenetsky ◽  
Andrey I. Ipatov ◽  
Alexander A. Rydel ◽  
Kharis A. Musaleev ◽  
Anastasija  N. Nikonorova

Background. When creating an effective reservoir pressure maintenance system, unstable spontaneous hydraulic fractures can be created in injection wells. This can both negatively and positively affect hydrocarbon production. First, fracture improves reservoir connectivity, which increases injection efficiency. On the other hand, unstable fractures can cause behind-the-casing flows and unproductive injection into off-target layers or fingering. Goal. The paper is devoted to the analysis of well testing (PTA) and production logging (PLT) improvement for the diagnosis of unstable fractures in injection wells. Materials and methods. The analysis is based on the results of modeling the pressure in the reservoir system, describing the penetration reservoirs by an unrestricted conductivity unstable fracture. It is taken into account that the fracture can cross both the perforated formation and the thickness not penetrated by the perforation, and can grow with increasing overbalance. The modeling results made it possible both to assess the potential informative capabilities of well testing and to substantiate recommendations for the practical use of the obtained results. Conclusions. The proposed approaches to the technology of well testing and production logging and the interpretation of their results make it possible to estimate the additional thicknesses of the reservoirs connected by the spontaneous hydraulic fracturing to injection, the proportion of nonproductive injection in the total volume of the well. The research technology used by the authors is based on continuous measurements of pressure and flow rate during cyclic change of pressure and assessment of the effective transmissibility of the formation system at different heights of unstable fractures. The role of the PLT is to determine the effective production thickness of the reservoirs. When assessing the injectivity profile when penetrating the injector with the spontaneous hydraulic fracturing, the key role belongs to non-stationary temperature logging. In this case, it is necessary to take into account the specific features of temperature relaxation in the wellbore after the injection cycle, related to hydraulic fracturing, primarily the increase in the relaxation rate with increasing fracture length.

2020 ◽  
Vol 12 (5) ◽  
pp. 2145 ◽  
Author(s):  
Saad Alafnan ◽  
Murtada Aljawad ◽  
Guenther Glatz ◽  
Abdullah Sultan ◽  
Rene Windiks

Advancements in drilling and production technologies have made exploiting resources, which for long time were labeled unproducible such as shales, as economically feasible. In particular, lateral drilling coupled with hydraulic fracturing has created means for hydrocarbons to be transported from the shale matrix through the stimulated network of microcracks, natural fractures, and hydraulic fractures to the wellbore. Because of the degree of confinement, the ultimate recovery is just a small fraction of the total hydrocarbons in place. Our aim was to investigate how augmented pressure gradient through hydraulic fracturing when coupled with another derive mechanism such as heating can improve the overall recovery for more sustainable exploitation of unconventional resources. Knowledge on how hydrocarbons are stored and transported within the shale matrix is uncertain. Shale matrix, which consists of organic and inorganic constituents, have pore sizes of few nanometers, a degree of confinement at which our typical reservoir engineering models break down. These intricacies hinder any thorough investigations of hydrocarbon production from shale matrix under the influence of pressure and thermal gradients. Kerogen, which represents the solid part of the organic materials in shales, serves as form of nanoporous media, where hydrocarbons are stored and then expelled after shale stimulation procedure. In this work, a computational representation of a kerogen–hydrocarbon system was replicated to study the depletion process under coupled mechanisms of pressure and temperature. The extent of production enhancement because of increasing temperature was shown. Moreover, heating requirements to achieve the enhancement at reservoir scale was also presented to assess the sustainability of the proposed method.


2021 ◽  
Author(s):  
Ayman R. Al-Nakhli ◽  
Zeeshan Tariq ◽  
Mohamed Mahmoud ◽  
Abdulazeez Abdulraheem

Abstract Commercial volumes of hydrocarbon production from tight unconventional reservoirs need massive hydraulic fracturing operations. Tight unconventional formations are typically located inside deep and over-pressured formations where the rock fracture pressure with slickwater becomes so high because of huge in situ stresses. Therefore, several lost potentials and failures were recorded because of high pumping pressure requirements and reservoir tightness. In this study, thermochemical fluids are introduced as a replacement for slickwater. These thermochemical fluids are capable of reducing the rock fracture pressure by generating micro-cracks and tiny fractures along with the main hydraulic fractures. Thermochemical upon reaction can generate heat and pressure simultaneously. In this study, several hydraulic fracturing experiments in the laboratory on different synthetic cement samples blocks were carried out. Cement blocks were made up of several combinations of cement and sand ratios to simulate real rock scenarios. Results showed that fracturing with thermochemical fluids can reduce the breakdown pressure of the cement blocks by 30%, while applied pressure was reduced up to 88%, when using thermochemical fluid, compared to slickwater. In basins with excessive tectonic stresses, the current invention can become an enabler to fracture and stimulate well stages which otherwise left untreated. A new methodology is developed to lower the breakdown pressure of such reservoirs, and enable fracturing. Keywords: Unconventional formation; breakdown pressure; thermochemicals; micro fractures.


2018 ◽  
Vol 6 (4) ◽  
pp. T951-T965 ◽  
Author(s):  
Edith Sotelo ◽  
Yongchae Cho ◽  
Richard L. Gibson Jr.

Hydraulic fracturing is a common stimulation technique in unconventional reservoirs to create fractures systems and allow hydrocarbon production. Proppant (granular material) is normally injected during hydraulic fracturing to keep open the fracture network and enhance hydrocarbon production performance. Proppant has a strong influence on fracture compliance and therefore will affect the characteristics of the generated seismic wavefield. To account for the effect of proppant in fracture compliance, we have developed new analytical formulations to obtain normal and tangential compliance for the case of dry and fluid-saturated fractures. We derive these expressions based on Hertz-Mindlin contact theory. Results from the compliance sensitivity analyses provide insights into the effects of proppant distribution and mechanical properties on fracture compliance. We also applied the innovative generalized multiscale finite-element method (GMsFEM) to simulate wave propagation through discrete hydraulic fractures filled with proppant. The GMsFEM approach represents individual fractures on a finely discretized mesh; this fine mesh is used to capture fracture properties by generating quantities (basis functions) that are used for modeling wave propagation on a much coarser grid. This methodology reduces the size of the computational problem, allowing faster results. Simulation results indicate the changes of the scattered wavefield as the proppant placement varies in different parts of the fractures and as the number of fracture stages increases.


1985 ◽  
Vol 25 (01) ◽  
pp. 46-54 ◽  
Author(s):  
N.R. Warpinski

Abstract Measurements of width and pressure in a propagating hydraulic fracture have been made in tests conducted at the U.S. DOE's Nevada test site. This was accomplished by creating an "instrumented fracture" at a tunnel complex (at a depth of 1,400 ft [425 m]) where realistic insitu conditions prevail, particularly with respect to stress and geologic features such as natural fractures and material anisotropy. Analyses of these data show that the pressure drop along the fracture length is much larger than predicted by viscous theory, which currently is used in models, This apparently is caused by the tortuosity of the fracture path, multiple fracture strands, roughness, and sharp path, multiple fracture strands, roughness, and sharp turns (corners) in the flow path resulting from natural fractures and rock property variations. It suggests that fracture design models need to be updated to include a more realistic friction factor so that fracture lengths are not overestimated. Introduction Hydraulic fracturing, which has proved a valuable well-stimulation technique for low-permeability reservoirs, has been the subject of considerable study for nearly 30 years. Many theories have been advanced to model the process and aid in the design of the treatment. In process and aid in the design of the treatment. In general these theories differ mainly in the approach used to model the rock deformation (i.e., the width equation). The fluid mechanics model in all cases is based on A pressure drop that is derived theoretically for parallel pressure drop that is derived theoretically for parallel flow between smooth plates or in smooth pipes (at least for laminar flow, which prevails in the large majority of fracture treatments). Attempts to verify these models have been generally limited tolaboratory studies, such as those of Blot et al., which are difficult to perform and may be impossible to scale if rock is used,postfracture well testing or production history matching analyses to deduce fracture length (e.g., those of Holditch and Lee ),analyses of fracturing pressure records by Nolte and Smith, 15 andwellbore width measurements by Smith. 16 The data from these studies are very limited and it is difficult to arrive at a consensus on the validity of the previously mentioned models. However, well testing and production history matching studies usually show that fracture lengths are overestimated considerably. This study is an initial attempt to measure pressure and width in propagating hydraulic fractures under conditions that avoid some of the size and scaling problems of laboratory tests and yet provide greater accessibility and instrumentation than field tests. These experiments were conducted at the U.S. DOE's Nevada test site, where hydraulic fractures were created and monitored from an existing tunnel complex. This initial experiment was conducted to determine whether it was feasible to measure important fracture parameters accurately and obtain significant information about fracture growth processes. Of particular importance was the pressure processes. Of particular importance was the pressure drop along the length of the propagating fracture. Background Hydraulic fractures are not the smooth parallel plates that they usually are modeled to be. Mineback experiments 17–20 have shown that there is considerable surface roughness and waviness, common en echelon fracturing and multiple stranding, and significant offsets when natural fractures are intersected. Natural fractures in core show many of these same characteristics, although the fracturing mechanism admittedly may be different. Laboratory experiments also show many of these same effects. Lamont and Jessen demonstrated the offset of hydraulic fractures at natural joints and showed the surface waviness and roughness of the fracture. Blot et al. 13 found that the roughness of the fracture surface depended on rock type and decreased with increasing confining stresses. Smith 16 measured fracture width at the wellbore with a TV camera and observed consider-able width variation or large-scale roughness. The effect of such variability of the fracture shape, path, and surface features must be an increase in pressure drop along the length of the fracture compared with that of the ideal case. This may have a significant influence on the resultant widths, lengths, and heights of the induced fracture. In the ideal case, the pressure drop for laminar flow usually is represented by a friction factor, (1) where NRe is the Reynolds number and C depends on the geometry. Huitt, Rothfus and Monrad, Rothfus et al. and Whan and Rothfus describe correlations for flow through parallel plates and tubes for both laminar and turbulent flow. For relatively smooth tubes C is 16 and for smooth parallel plates it is. Elliptic cross sections of zero ellipticity are calculated to have a C value of 2 pi 2. A generally held belief from all these studies is that in the laminar regime (NRe less than 2,000), flow through parallel plates is independent of roughness. parallel plates is independent of roughness. SPEJ P. 46


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4040
Author(s):  
Weige Han ◽  
Zhendong Cui ◽  
Zhengguo Zhu

When the shale gas reservoir is fractured, stress shadows can cause reorientation of hydraulic fractures and affect the complexity. To reveal the variation of stress shadow with perforation spacing, the numerical model between different perforation spacing was simulated by the extended finite element method (XFEM). The variation of stress shadows was analyzed from the stress of two perforation centers, the fracture path, and the ratio of fracture length to spacing. The simulations showed that the reservoir rock at the two perforation centers is always in a state of compressive stress, and the smaller the perforation spacing, the higher the maximum compressive stress. Moreover, the compressive stress value can directly reflect the size of the stress shadow effect, which changes with the fracture propagation. When the fracture length extends to 2.5 times the perforation spacing, the stress shadow effect is the strongest. In addition, small perforation spacing leads to backward-spreading of hydraulic fractures, and the smaller the perforation spacing, the greater the deflection degree of hydraulic fractures. Additionally, the deflection angle of the fracture decreases with the expansion of the fracture. Furthermore, the perforation spacing has an important influence on the initiation pressure, and the smaller the perforation spacing, the greater the initiation pressure. At the same time, there is also a perforation spacing which minimizes the initiation pressure. However, when the perforation spacing increases to a certain value (the result of this work is about 14 m), the initiation pressure will not change. This study will be useful in guiding the design of programs in simultaneous fracturing.


2021 ◽  
pp. 014459872198899
Author(s):  
Weiyong Lu ◽  
Changchun He

Directional rupture is one of the most important and most common problems related to rock breaking. The goal of directional rock breaking can be effectively achieved via multi-hole linear co-directional hydraulic fracturing. In this paper, the XSite software was utilized to verify the experimental results of multi-hole linear co-directional hydraulic fracturing., and its basic law is studied. The results indicate that the process of multi-hole linear co-directional hydraulic fracturing can be divided into four stages: water injection boost, hydraulic fracture initiation, and the unstable and stable propagation of hydraulic fracture. The stable expansion stage lasts longer and produces more microcracks than the unstable expansion stage. Due to the existence of the borehole-sealing device, the three-dimensional hydraulic fracture first initiates and expands along the axial direction in the bare borehole section, then extends along the axial direction in the non-bare hole section and finally expands along the axial direction in the rock mass without the borehole. The network formed by hydraulic fracture in rock is not a pure plane, but rather a curved spatial surface. The curved spatial surface passes through both the centre of the borehole and the axial direction relative to the borehole. Due to the boundary effect, the curved spatial surface goes toward the plane in which the maximum principal stress occurs. The local ground stress field is changed due to the initiation and propagation of hydraulic fractures. The propagation direction of the fractures between the fracturing boreholes will be deflected. A fracture propagation pressure that is greater than the minimum principle stress and a tension field that is induced in the leading edge of the fracture end, will aid to fracture intersection; as a result, the possibility of connecting the boreholes will increase.


2021 ◽  
Author(s):  
A. Kirby Nicholson ◽  
Robert C. Bachman ◽  
R. Yvonne Scherz ◽  
Robert V. Hawkes

Abstract Pressure and stage volume are the least expensive and most readily available data for diagnostic analysis of hydraulic fracturing operations. Case history data from the Midland Basin is used to demonstrate how high-quality, time-synchronized pressure measurements at a treatment and an offsetting shut-in producing well can provide the necessary input to calculate fracture geometries at both wells and estimate perforation cluster efficiency at the treatment well. No special wellbore monitoring equipment is required. In summary, the methods outlined in this paper quantifies fracture geometries as compared to the more general observations of Daneshy (2020) and Haustveit et al. (2020). Pressures collected in Diagnostic Fracture Injection Tests (DFITs), select toe-stage full-scale fracture treatments, and offset observation wells are used to demonstrate a simple workflow. The pressure data combined with Volume to First Response (Vfr) at the observation well is used to create a geometry model of fracture length, width, and height estimates at the treatment well as illustrated in Figure 1. The producing fracture length of the observation well is also determined. Pressure Transient Analysis (PTA) techniques, a Perkins-Kern-Nordgren (PKN) fracture propagation model and offset well Fracture Driven Interaction (FDI) pressures are used to quantify hydraulic fracture dimensions. The PTA-derived Farfield Fracture Extension Pressure, FFEP, concept was introduced in Nicholson et al. (2019) and is summarized in Appendix B of this paper. FFEP replaces Instantaneous Shut-In Pressure, ISIP, for use in net pressure calculations. FFEP is determined and utilized in both DFITs and full-scale fracture inter-stage fall-off data. The use of the Primary Pressure Derivative (PPD) to accurately identify FFEP simplifies and speeds up the analysis, allowing for real time treatment decisions. This new technique is called Rapid-PTA. Additionally, the plotted shape and gradient of the observation-well pressure response can identify whether FDI's are hydraulic or poroelastic before a fracture stage is completed and may be used to change stage volume on the fly. Figure 1Fracture Geometry Model with FDI Pressure Matching Case studies are presented showing the full workflow required to generate the fracture geometry model. The component inputs for the model are presented including a toe-stage DFIT, inter-stage pressure fall-off, and the FDI pressure build-up. We discuss how to optimize these hydraulic fractures in hindsight (look-back) and what might have been done in real time during the completion operations given this workflow and field-ready advanced data-handling capability. Hydraulic fracturing operations can be optimized in real time using new Rapid-PTA techniques for high quality pressure data collected on treating and observation wells. This process opens the door for more advanced geometry modeling and for rapid design changes to save costs and improve well productivity and ultimate recovery.


2021 ◽  
Vol 73 (04) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199149, “Rate-Transient-Analysis-Assisted History Matching With a Combined Hydraulic Fracturing and Reservoir Simulator,” by Garrett Fowler, SPE, and Mark McClure, SPE, ResFrac, and Jeff Allen, Recoil Resources, prepared for the 2020 SPE Latin American and Caribbean Petroleum Engineering Conference, originally scheduled to be held in Bogota, Colombia, 17–19 March. The paper has not been peer reviewed. This paper presents a step-by-step work flow to facilitate history matching numerical simulation models of hydraulically fractured shale wells. Sensitivity analysis simulations are performed with a coupled hydraulic fracturing, geomechanics, and reservoir simulator. The results are used to develop what the authors term “motifs” that inform the history-matching process. Using intuition from these simulations, history matching can be expedited by changing matrix permeability, fracture conductivity, matrix-pressure-dependent permeability, boundary effects, and relative permeability. Introduction This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199149, “Rate-Transient-Analysis-Assisted History Matching With a Combined Hydraulic Fracturing and Reservoir Simulator,” by Garrett Fowler, SPE, and Mark McClure, SPE, ResFrac, and Jeff Allen, Recoil Resources, prepared for the 2020 SPE Latin American and Caribbean Petroleum Engineering Conference, originally scheduled to be held in Bogota, Colombia, 17-19 March. The paper has not been peer reviewed. This paper presents a step-by-step work flow to facilitate history matching numerical simulation models of hydraulically fractured shale wells. Sensitivity analysis simulations are performed with a coupled hydraulic fracturing, geomechanics, and reservoir simulator. The results are used to develop what the authors term “motifs” that inform the history-matching process. Using intuition from these simulations, history matching can be expedited by changing matrix permeability, fracture conductivity, matrix-pressure-dependent permeability, boundary effects, and relative permeability. Introduction The concept of rate transient analysis (RTA) involves the use of rate and pressure trends of producing wells to estimate properties such as permeability and fracture surface area. While very useful, RTA is an analytical technique and has commensurate limitations. In the complete paper, different RTA motifs are generated using a simulator. Insights from these motif simulations are used to modify simulation parameters to expediate and inform the history- matching process. The simulation history-matching work flow presented includes the following steps: 1 - Set up a simulation model with geologic properties, wellbore and completion designs, and fracturing and production schedules 2 - Run an initial model 3 - Tune the fracture geometries (height and length) to heuristic data: microseismic, frac-hit data, distributed acoustic sensing, or other diagnostics 4 - Match instantaneous shut-in pressure (ISIP) and wellhead pressure (WHP) during injection 5 - Make RTA plots of the real and simulated production data 6 - Use the motifs presented in the paper to identify possible production mechanisms in the real data 7 - Adjust history-matching parameters in the simulation model based on the intuition gained from RTA of the real data 8 -Iterate Steps 5 through 7 to obtain a match in RTA trends 9 - Modify relative permeabilities as necessary to obtain correct oil, water, and gas proportions In this study, the authors used a commercial simulator that fully integrates hydraulic fracturing, wellbore, and reservoir simulation into a single modeling code. Matching Fracturing Data The complete paper focuses on matching production data, assisted by RTA, not specifically on the matching of fracturing data such as injection pressure and fracture geometry (Steps 3 and 4). Nevertheless, for completeness, these steps are very briefly summarized in this section. Effective fracture toughness is the most-important factor in determining fracture length. Field diagnostics suggest considerable variability in effective fracture toughness and fracture length. Typical half-lengths are between 500 and 2,000 ft. Laboratory-derived values of fracture toughness yield longer fractures (propagation of 2,000 ft or more from the wellbore). Significantly larger values of fracture toughness are needed to explain the shorter fracture length and higher net pressure values that are often observed. The authors use a scale- dependent fracture-toughness parameter to increase toughness as the fracture grows. This allows the simulator to match injection pressure data while simultaneously limiting fracture length. This scale-dependent toughness scaling parameter is the most-important parameter in determining fracture size.


2021 ◽  
Author(s):  
Aamir Lokhandwala ◽  
Vaibhav Joshi ◽  
Ankit Dutt

Abstract Hydraulic fracturing is a widespread well stimulation treatment in the oil and gas industry. It is particularly prevalent in shale gas fields, where virtually all production can be attributed to the practice of fracturing. It is also used in the context of tight oil and gas reservoirs, for example in deep-water scenarios where the cost of drilling and completion is very high; well productivity, which is dictated by hydraulic fractures, is vital. The correct modeling in reservoir simulation can be critical in such settings because hydraulic fracturing can dramatically change the flow dynamics of a reservoir. What presents a challenge in flow simulation due to hydraulic fractures is that they introduce effects that operate on a different length and time scale than the usual dynamics of a reservoir. Capturing these effects and utilizing them to advantage can be critical for any operator in context of a field development plan for any unconventional or tight field. This paper focuses on a study that was undertaken to compare different methods of simulating hydraulic fractures to formulate a field development plan for a tight gas field. To maintaing the confidentiality of data and to showcase only the technical aspect of the workflow, we will refer to the asset as Field A in subsequent sections of this paper. Field A is a low permeability (0.01md-0.1md), tight (8% to 12% porosity) gas-condensate (API ~51deg and CGR~65 stb/mmscf) reservoir at ~3000m depth. Being structurally complex, it has a large number of erosional features and pinch-outs. The study involved comparing analytical fracture modeling, explicit modeling using local grid refinements, tartan gridding, pseudo-well connection approach and full-field unconventional fracture modeling. The result of the study was to use, for the first time for Field A, a system of generating pseudo well connections to simulate hydraulic fractures. The approach was found to be efficient both terms of replicating field data for a 10 year period while drastically reducing simulation runtime for the subsequent 10 year-period too. It helped the subsurface team to test multiple scenarios in a limited time-frame leading to improved project management.


2015 ◽  
Author(s):  
Manhal Sirat ◽  
Mujahed Ahmed ◽  
Xing Zhang

Abstract In-situ stress state plays an important role in controlling fracture growth and containment in hydraulic fracturing managements. It is evident that the mechanical properties, existing stress regime and the natural fracture network of its reservoir rocks and the surrounding formations mainly control the geometry, size and containments of produced hydraulic fractures. Furthermore, the three principal in situ stresses' axes swap directions and magnitudes at different depths giving rise to identifying different mechanical bedrocks with corresponding stress regimes at different depths. Hence predicting the hydro-fractures can be theoretically achieved once all the above data are available. This is particularly difficult in unconventional and tight carbonate reservoirs, where heterogeneity and highly stress variation, in terms of magnitude and orientation, are expected. To optimize the field development plan (FDP) of a tight carbonate gas reservoir in Abu Dhabi, 1D Mechanical Earth Models (MEMs), involving generating the three principal in-situ stresses' profiles and mechanical property characterization with depth, have been constructed for four vertical wells. The results reveal the swap of stress magnitudes at different mechanical layers, which controls the dimension and orientation of the produced hydro-fractures. Predicted containment of the Hydro-fractures within the specific zones is likely with inevitable high uncertainty when the stress contrast between Sv, SHmax with Shmin respectively as well as Young's modulus and Poisson's Ratio variations cannot be estimated accurately. The uncertainty associated with this analysis is mainly related to the lacking of the calibration of the stress profiles of the 1D MEMs with minifrac and/or XLOT data, and both mechanical and elastic properties with rock mechanic testing results. This study investigates the uncertainty in predicting hydraulic fracture containment due to lacking such calibration, which highlights that a complete suite of data, including calibration of 1D MEMs, is crucial in hydraulic fracture treatment.


Sign in / Sign up

Export Citation Format

Share Document