scholarly journals The Eyjafjöll explosive volcanic eruption from a microwave weather radar perspective

2011 ◽  
Vol 11 (18) ◽  
pp. 9503-9518 ◽  
Author(s):  
F. S. Marzano ◽  
M. Lamantea ◽  
M. Montopoli ◽  
S. Di Fabio ◽  
E. Picciotti

Abstract. The sub-glacial Eyjafjöll explosive volcanic eruptions of April and May 2010 are analyzed and quantitatively interpreted by using ground-based weather radar data and the Volcanic Ash Radar Retrieval (VARR) technique. The Eyjafjöll eruptions have been continuously monitored by the Keflavík C-band weather radar, located at a distance of about 155 km from the volcano vent. Considering that the Eyjafjöll volcano is approximately 20 km from the Atlantic Ocean and that the northerly winds stretched the plume toward the mainland Europe, weather radars are the only means to provide an estimate of the total ejected tephra. The VARR methodology is summarized and applied to available radar time series to estimate the plume maximum height, ash particle category, ash volume, ash fallout and ash concentration every 5 min near the vent. Estimates of the discharge rate of eruption, based on the retrieved ash plume top height, are provided together with an evaluation of the total erupted mass and volume. Deposited ash at ground is also retrieved from radar data by empirically reconstructing the vertical profile of radar reflectivity and estimating the near-surface ash fallout. Radar-based retrieval results cannot be compared with ground measurements, due to the lack of the latter, but further demonstrate the unique contribution of these remote sensing products to the understating and modelling of explosive volcanic ash eruptions.

2011 ◽  
Vol 11 (4) ◽  
pp. 12367-12409 ◽  
Author(s):  
F. S. Marzano ◽  
M. Lamantea ◽  
M. Montopoli ◽  
S. Di Fabio ◽  
E. Picciotti

Abstract. The sub-glacial Eyjafjöll explosive volcanic eruptions of April and May 2010 are analyzed and quantitatively interpreted by using ground-based weather radar data and volcanic ash radar retrieval (VARR) technique. The Eyjafjöll eruptions have been continuously monitored by the Keflavík C-band weather radar, located at a distance of about 155 km from the volcano vent. Considering that the Eyjafjöll volcano is approximately 20 km far from the Atlantic Ocean and that the northerly winds stretched the plume toward the mainland Europe, weather radars are the only means to provide an estimate of the total ejected tephra. The VARR methodology is summarized and applied to available radar time series to estimate the plume maximum height, ash particle category, ash volume, ash fallout and ash concentration every 5 min near the vent. Estimates of the discharge rate of eruption, based on the retrieved ash plume top height, are provided together with an evaluation of the total erupted mass and volume. Deposited ash at ground is also retrieved from radar data by empirically reconstructing the vertical profile of radar reflectivity and estimating the near-surface ash fallout. Radar-based retrieval results cannot be compared with ground measurements, due to the lack of the latter, but further demonstrate the unique contribution of these remote sensing products to the understating and modelling of explosive volcanic ash eruptions.


2020 ◽  
Vol 101 (2) ◽  
pp. E90-E108
Author(s):  
D. S. Zrnić ◽  
P. Zhang ◽  
V. Melnikov ◽  
E. Kabela

Abstract High-sensitivity weather radars easily detect nonmeteorological phenomena characterized by weak radar returns. Fireworks are the example presented here. To understand radar observations, an experiment was conducted in which the National Severe Storms Laboratory (NSSL)’s research (3-cm wavelength) dual-polarization radar and a video camera were located at 1 km from fireworks in Norman, Oklahoma. The fireworks from the 4 July 2017 celebration were recorded by both instruments. The experiment is described. Few bursts recorded by the camera are analyzed to obtain the height of the explosion, its maximum diameter, number of stars, and the duration of the visible image. Radar volume scans are examined to characterize the height of the observation, the maximum reflectivity, and its distribution with height. The fireworks location is close to the Terminal Doppler Weather Radar (TDWR) that operates in single polarization at a 5-cm wavelength and monitors hazardous weather over the Oklahoma City airport. A third radar with data from the event is the Weather Surveillance Radar-1988 Doppler (WSR-88D) located in Norman. It has a wavelength of 10 cm and supports technical developments at the Radar Operation Center. Reflectivity factors measured by the three radars are compared to infer the size of dominant scatterers. The polarimetric characteristics of fireworks returns are analyzed. Although these differ from those of precipitation, they are indistinguishable from insect returns. Radar observation of larger fireworks in Fort Worth, Texas, with a WSR-88D is included and compared with the observations of the smaller fireworks in Norman. We expect the detectability of explosions would be similar as of fireworks. Pinpointing locations would be useful to first responders, or air quality forecasters. A benefit of fireworks recognition in weather radar data is that it can prevent contamination of precipitation accumulations.


2018 ◽  
Vol 19 (4) ◽  
pp. 715-726 ◽  
Author(s):  
Nadav Peleg ◽  
Francesco Marra ◽  
Simone Fatichi ◽  
Peter Molnar ◽  
Efrat Morin ◽  
...  

Abstract This study contributes to the understanding of the relationship between air temperature and convection by analyzing the characteristics of rainfall at the storm and convective rain cell scales. High spatial–temporal resolution (1 km, 5 min) estimates from a uniquely long weather radar record (24 years) were coupled with near-surface air temperature over Mediterranean and semiarid regions in the eastern Mediterranean. In the examined temperature range (5°–25°C), the peak intensity of individual convective rain cells was found to increase with temperature, but at a lower rate than the 7%°C−1 scaling expected from the Clausius–Clapeyron relation, while the area of the individual convective rain cells slightly decreases or, at most, remains unchanged. At the storm scale, the areal convective rainfall was found to increase with warmer temperatures, whereas the areal nonconvective rainfall and the stormwide area decrease. This suggests an enhanced moisture convergence from the stormwide extent toward the convective rain cells. Results indicate a reduction in the total rainfall amounts and an increased heterogeneity of the spatial structure of the storm rainfall for temperatures increasing up to 25°C. Thermodynamic conditions, analyzed using convective available potential energy, were determined to be similar between Mediterranean and semiarid regions. Limitations in the atmospheric moisture availability when shifting from Mediterranean to semiarid climates were detected and explain the suppression of the intensity of the convective rain cells when moving toward drier regions. The relationships obtained in this study are relevant for nearby regions characterized by Mediterranean and semiarid climates.


2007 ◽  
Vol 10 ◽  
pp. 111-115
Author(s):  
C. I. Christodoulou ◽  
S. C. Michaelides

Abstract. Weather radars are used to measure the electromagnetic radiation backscattered by cloud raindrops. Clouds that backscatter more electromagnetic radiation consist of larger droplets of rain and therefore they produce more rain. The idea is to estimate rain rate by using weather radar as an alternative to rain-gauges measuring rainfall on the ground. In an experiment during two days in June and August 1997 over the Italian-Swiss Alps, data from weather radar and surrounding rain-gauges were collected at the same time. The statistical KNN and the neural SOM classifiers were implemented for the classification task using the radar data as input and the rain-gauge measurements as output. The proposed system managed to identify matching pattern waveforms and the rainfall rate on the ground was estimated based on the radar reflectivities with a satisfactory error rate, outperforming the traditional Z/R relationship. It is anticipated that more data, representing a variety of possible meteorological conditions, will lead to improved results. The results in this work show that an estimation of rain rate based on weather radar measurements treated with statistical and neural classifiers is possible.


2011 ◽  
Vol 4 (4) ◽  
pp. 5569-5595
Author(s):  
X. Muth ◽  
M. Schneebeli ◽  
A. Berne

Abstract. Accurate positioning of data collected by a weather radar is of primary importance for their appropriate georeferencing, which in turn makes it possible to combine those with additional sources of information (topography, land cover maps, meteorological simulations from numerical weather models to list a few). This issue is especially acute for mobile radar systems, for which accurate and stable levelling might be difficult to ensure. The sun is a source of microwave radiation, which can be detected by weather radars and used for the accurate positioning of the radar data. This paper presents a technique based on the sun echoes to quantify and hence correct for the instrumental errors which can affect the pointing accuracy of radar antenna. The proposed method is applied to data collected in the Swiss Alps using a mobile X-band radar system. The obtained instrumental bias values are evaluated by comparing the locations of the ground echoes predicted using these bias estimates with the observed ground echo locations. The very good agreement between the two confirms the good accuracy of the proposed method.


2013 ◽  
Vol 6 (4) ◽  
pp. 6215-6248 ◽  
Author(s):  
M. Montopoli ◽  
G. Vulpiani ◽  
D. Cimini ◽  
E. Picciotti ◽  
F. S. Marzano

Abstract. The important role played by ground-based microwave weather radars for the monitoring of volcanic ash clouds has been recently demonstrated. The potential of microwaves from satellite passive and ground-based active sensors to estimate near-source volcanic ash cloud parameters has been also proposed, though with little investigation of their synergy and the role of the radar polarimetry. The goal of this work is to show the potentiality and drawbacks of the X-band Dual Polarization radar measurements (DPX) through the data acquired during the latest Grímsvötn volcanic eruptions that took place on May 2011 in Iceland. The analysis is enriched by the comparison between DPX data and the observations from the satellite Special Sensor Microwave Imager/Sounder (SSMIS) and a C-band Single Polarization (SPC) radar. SPC, DPX, and SSMIS instruments cover a large range of the microwaves spectrum, operating respectively at 5.4, 3.2, and 0.16–1.6 cm wavelengths. The multi-source comparison is made in terms of Total Columnar Concentration (TCC). The latter is estimated from radar observables using the "Volcanic Ash Radar Retrieval for dual-Polarization X band systems" (VARR-PX) algorithm and from SSMIS brightness temperature (BT) using a linear BT–TCC relationship. The BT–TCC relationship has been compared with the analogous relation derived from SSMIS and SPC radar data for the same case study. Differences between these two linear regression curves are mainly attributed to an incomplete observation of the vertical extension of the ash cloud, a coarser spatial resolution and a more pronounced non-uniform beam filling effect of SPC measurements (260 km far from the volcanic vent) with respect to the DPX (70 km from the volcanic vent). Results show that high-spatial-resolution DPX radar data identify an evident volcanic plume signature, even though the interpretation of the polarimetric variables and the related retrievals is not always straightforward, likely due to the possible formation of ash and ice particle aggregates and the radar signal depolarization induced by turbulence effects. The correlation of the estimated TCCs derived from DPX and SSMIS BTs reaches −0.73.


2010 ◽  
Vol 27 (11) ◽  
pp. 1868-1880 ◽  
Author(s):  
Kenta Hood ◽  
Sebastián Torres ◽  
Robert Palmer

Abstract Wind turbines cause contamination of weather radar signals that is often detrimental and difficult to distinguish from cloud returns. Because the turbines are always at the same location, it would seem simple to identify where wind turbine clutter (WTC) contaminates the weather radar data. However, under certain atmospheric conditions, anomalous propagation of the radar beam can occur such that WTC corrupts weather data on constantly evolving locations, or WTC can be relatively weak such that contamination on predetermined locations does not occur. Because of the deficiency of using turbine locations as a proxy for WTC, an effective detection algorithm is proposed to perform automatic flagging of contaminated weather radar data, which can then be censored or filtered. Thus, harmful effects can be reduced that may propagate to automatic algorithms or may hamper the forecaster’s ability to issue timely warnings. In this work, temporal and spectral features related to WTC signatures are combined in a fuzzy logic algorithm to classify the radar return as being contaminated by WTC or not. The performance of the algorithm is quantified using simulations and the algorithm is applied to a real data case from the radar facility in Dodge City, Kansas (KDDC). The results illustrate that WTC contamination can be detected automatically, thereby improving the quality control of weather radar data.


2014 ◽  
Vol 7 (2) ◽  
pp. 537-552 ◽  
Author(s):  
M. Montopoli ◽  
G. Vulpiani ◽  
D. Cimini ◽  
E. Picciotti ◽  
F. S. Marzano

Abstract. The important role played by ground-based microwave weather radars for the monitoring of volcanic ash clouds has been recently demonstrated. The potential of microwaves from satellite passive and ground-based active sensors to estimate near-source volcanic ash cloud parameters has been also proposed, though with little investigation of their synergy and the role of the radar polarimetry. The goal of this work is to show the potentiality and drawbacks of the X-band dual polarization (DPX) radar measurements through the data acquired during the latest Grímsvötn volcanic eruptions that took place in May 2011 in Iceland. The analysis is enriched by the comparison between DPX data and the observations from the satellite Special Sensor Microwave Imager/Sounder (SSMIS) and a C-band single polarization (SPC) radar. SPC, DPX, and SSMIS instruments cover a large range of the microwave spectrum, operating respectively at 5.4, 3.2, and 0.16–1.6 cm wavelengths.


2010 ◽  
Vol 27 (1) ◽  
pp. 159-166 ◽  
Author(s):  
Iwan Holleman ◽  
Asko Huuskonen ◽  
Mikko Kurri ◽  
Hans Beekhuis

Abstract A method for operational monitoring of a weather radar receiving chain, including the antenna gain and the receiver, is presented. The “online” method is entirely based on the analysis of sun signals in the polar volume data produced during operational scanning of weather radars. The method is an extension of that for determining the weather radar antenna pointing at low elevations using sun signals, and it is suited for routine application. The solar flux from the online method agrees very well with that obtained from “offline” sun tracking experiments at two weather radar sites. Furthermore, the retrieved sun flux is compared with data from the Dominion Radio Astrophysical Observatory (DRAO) in Canada. Small biases in the sun flux data from the Dutch and Finnish radars (between −0.93 and +0.47 dB) are found. The low standard deviations of these sun flux data against those from DRAO (0.14–0.20 dB) demonstrate the stability of the weather radar receiving chains and of the sun-based online monitoring. Results from a daily analysis of the sun signals in online radar data can be used for monitoring the alignment of the radar antenna and the stability of the radar receiver system. By comparison with the observations from a sun flux monitoring station, even the calibration of the receiving chain can be checked. The method presented in this paper has great potential for routine monitoring of weather radars in national and international networks.


Sign in / Sign up

Export Citation Format

Share Document