scholarly journals Evaluating the skill of high-resolution WRF-Chem simulations in describing drivers of aerosol direct climate forcing on the regional scale

2016 ◽  
Vol 16 (1) ◽  
pp. 397-416 ◽  
Author(s):  
P. Crippa ◽  
R. C. Sullivan ◽  
A. Thota ◽  
S. C. Pryor

Abstract. Assessing the ability of global and regional models to describe aerosol optical properties is essential to reducing uncertainty in aerosol direct radiative forcing in the contemporary climate and to improving confidence in future projections. Here we evaluate the performance of high-resolution simulations conducted using the Weather Research and Forecasting model with coupled with Chemistry (WRF-Chem) in capturing spatiotemporal variability of aerosol optical depth (AOD) and the Ångström exponent (AE) by comparison with ground- and space-based remotely sensed observations. WRF-Chem is run over eastern North America at a resolution of 12 km for a representative year (2008). A systematic positive bias in simulated AOD relative to observations is found (annual mean fractional bias (MFB) is 0.15 and 0.50 relative to MODIS (MODerate resolution Imaging Spectroradiometer) and AERONET, respectively), whereas the spatial variability is well captured during most months. The spatial correlation of observed and simulated AOD shows a clear seasonal cycle with highest correlation during summer months (r = 0.5–0.7) when the aerosol loading is large and more observations are available. The model is biased towards the simulation of coarse-mode aerosols (annual MFB for AE  =  −0.10 relative to MODIS and −0.59 for AERONET), but the spatial correlation for AE with observations is 0.3–0.5 during most months, despite the fact that AE is retrieved with higher uncertainty from the remote-sensing observations. WRF-Chem also exhibits high skill in identifying areas of extreme and non-extreme aerosol loading, and its ability to correctly simulate the location and relative intensity of extreme aerosol events (i.e., AOD  >  75th percentile) varies between 30 and 70 % during winter and summer months, respectively.

2015 ◽  
Vol 15 (19) ◽  
pp. 27311-27355
Author(s):  
P. Crippa ◽  
R. C. Sullivan ◽  
A. Thota ◽  
S. C. Pryor

Abstract. Assessing the ability of global and regional models to describe aerosol optical properties is essential to reducing uncertainty in aerosol direct radiative forcing in the contemporary climate and to improving confidence in future projections. Here we evaluate the skill of high-resolution simulations conducted using the Weather Research and Forecasting model with coupled chemistry (WRF-Chem) in capturing spatio-temporal variability of aerosol optical depth (AOD) and Ångström exponent (AE) by comparison with ground- and space- based remotely sensed observations. WRF-Chem is run over eastern North America at a resolution of 12 km for a representative year (2008). A small systematic positive bias in simulated AOD relative to observations is found (annual MFB = 0.17 and 0.50 when comparing with MODIS and AERONET respectively), whereas the spatial variability is well captured during most months. The spatial correlation of AOD shows a clear seasonal cycle with highest correlation during summer months (r = 0.5–0.7) when the aerosol loading is large and more observations are available. AE is retrieved with higher uncertainty from the remote sensing observations. The model is biased towards simulation of coarse mode aerosols (annual MFB for AE = −0.10 relative to MODIS and −0.59 for AERONET), but the spatial correlation for AE with observations is 0.3–0.5 during most months. WRF-Chem also exhibits high skill in identifying areas of extreme and non-extreme aerosol loading, and its ability to correctly simulate the location and relative intensity of an extreme aerosol event (i.e. AOD > 75th percentile) varies between 30 and 70 % during winter and summer months respectively.


2021 ◽  
Vol 13 (2) ◽  
pp. 227
Author(s):  
Arthur Elmes ◽  
Charlotte Levy ◽  
Angela Erb ◽  
Dorothy K. Hall ◽  
Ted A. Scambos ◽  
...  

In mid-June 2019, the Greenland ice sheet (GrIS) experienced an extreme early-season melt event. This, coupled with an earlier-than-average melt onset and low prior winter snowfall over western Greenland, led to a rapid decrease in surface albedo and greater solar energy absorption over the melt season. The 2019 melt season resulted in significantly more melt than other recent years, even compared to exceptional melt years previously identified in the moderate-resolution imaging spectroradiometer (MODIS) record. The increased solar radiation absorbance in 2019 warmed the surface and increased the rate of meltwater production. We use two decades of satellite-derived albedo from the MODIS MCD43 record to show a significant and extended decrease in albedo in Greenland during 2019. This decrease, early in the melt season and continuing during peak summer insolation, caused increased radiative forcing of the ice sheet of 2.33 Wm−2 for 2019. Radiative forcing is strongly influenced by the dramatic seasonal differences in surface albedo experienced by any location experiencing persistent and seasonal snow-cover. We also illustrate the utility of the newly developed Landsat-8 albedo product for better capturing the detailed spatial heterogeneity of the landscape, leading to a more refined representation of the surface energy budget. While the MCD43 data accurately capture the albedo for a given 500 m pixel, the higher spatial resolution 30 m Landsat-8 albedos more fully represent the detailed landscape variations.


2014 ◽  
Vol 14 (9) ◽  
pp. 13109-13131 ◽  
Author(s):  
B. Qu ◽  
J. Ming ◽  
S.-C. Kang ◽  
G.-S. Zhang ◽  
Y.-W. Li ◽  
...  

Abstract. The large change in albedo has a great effect on glacier ablation. Atmospheric aerosols (e.g. black carbon (BC) and dust) can reduce the albedo of glaciers and thus contribute to their melting. In this study, we investigated the measured albedo as well as the relationship between albedo and mass balance in Zhadang glacier on Mt. Nyanqentanglha associated with MODIS (10A1) data. The impacts of BC and dust in albedo reduction in different melting conditions were identified with SNow ICe Aerosol Radiative (SNICAR) model and in-situ data. It was founded that the mass balance of the glacier has a significant correlation with its surface albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra satellite. The average albedo of Zhadang glacier from MODIS increased with the altitude and fluctuated but overall had a decreasing trend during 2001–2010, with the highest (0.722) in 2003 and the lowest (0.597) in 2009 and 2010, respectively. The sensitivity analysis via SNICAR showed that BC was a major factor in albedo reduction when the glacier was covered by newly fallen snow. Nevertheless, the contribution of dust to albedo reduction can be as high as 58% when the glacier experienced strong surficial melting that the surface was almost bare ice. And the average radiative forcing (RF) caused by dust could increase from 1.1 to 8.6 W m−2 exceeding the forcings caused by BC after snow was deposited and surface melting occurred in Zhadang glacier. This suggest that it may be dust rather than BC, dominating the melting of some glaciers in the TP during melting seasons.


2013 ◽  
Vol 6 (2) ◽  
pp. 3215-3247 ◽  
Author(s):  
J. F. Meirink ◽  
R. A. Roebeling ◽  
P. Stammes

Abstract. Accurate calibration of satellite imagers is a prerequisite for using their measurements in climate applications. Here we present a method for the inter-calibration of geostationary and polar-orbiting imager solar channels based on regressions of collocated near-nadir radiances. Specific attention is paid to correcting for differences in spectral response between instruments. The method is used to calibrate the solar channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the geostationary Meteosat satellite with corresponding channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on the polar-orbiting Aqua satellite. The SEVIRI operational calibration is found to be stable during the years 2004 to 2009 but off by −8, −6, and +3.5% for channels 1 (0.6 μm), 2 (0.8 μm), and 3 (1.6 μm), respectively. These results are robust for a range of choices that can be made regarding data collocation and selection, as long as the viewing and illumination geometries of the two instruments are matched. Uncertainties in the inter-calibration method are estimated to be 1% for channel 1 and 1.5% for channels 2 and 3. A specific application of the method is the inter-calibration of polar imagers using SEVIRI as a transfer instrument. This offers an alternative to direct inter-calibration, which in general has to rely on high-latitude collocations. Using this method we have tied MODIS-Terra and Advanced Very High Resolution Radiometer (AVHRR) instruments on National Oceanic and Atmospheric Administration (NOAA) satellites 17 and 18 to MODIS-Aqua for the years 2007 to 2009. While reflectances of the two MODIS instruments differ less than 2% for all channels considered, deviations of an existing AVHRR calibration from MODIS-Aqua reach −3.5 and +2.5% for the 0.8 and 1.6 μm channels, respectively.


2016 ◽  
Vol 17 (7) ◽  
pp. 1999-2011 ◽  
Author(s):  
Steven D. Miller ◽  
Fang Wang ◽  
Ann B. Burgess ◽  
S. McKenzie Skiles ◽  
Matthew Rogers ◽  
...  

Abstract Runoff from mountain snowpack is an important freshwater supply for many parts of the world. The deposition of aeolian dust on snow decreases snow albedo and increases the absorption of solar irradiance. This absorption accelerates melting, impacting the regional hydrological cycle in terms of timing and magnitude of runoff. The Moderate Resolution Imaging Spectroradiometer (MODIS) Dust Radiative Forcing in Snow (MODDRFS) satellite product allows estimation of the instantaneous (at time of satellite overpass) surface radiative forcing caused by dust. While such snapshots are useful, energy balance modeling requires temporally resolved radiative forcing to represent energy fluxes to the snowpack, as modulated primarily by varying cloud cover. Here, the instantaneous MODDRFS estimate is used as a tie point to calculate temporally resolved surface radiative forcing. Dust radiative forcing scenarios were considered for 1) clear-sky conditions and 2) all-sky conditions using satellite-based cloud observations. Comparisons against in situ stations in the Rocky Mountains show that accounting for the temporally resolved all-sky solar irradiance via satellite retrievals yields a more representative time series of dust radiative effects compared to the clear-sky assumption. The modeled impact of dust on enhanced snowmelt was found to be significant, accounting for nearly 50% of the total melt at the more contaminated station sites. The algorithm is applicable to regional basins worldwide, bearing relevance to both climate process research and the operational management of water resources.


2020 ◽  
Author(s):  
Jiecan Cui ◽  
Tenglong Shi ◽  
Yue Zhou ◽  
Dongyou Wu ◽  
Xin Wang ◽  
...  

Abstract. Snow is the most reflective natural surface on Earth and consequently plays an important role in Earth’s climate. Light-absorbing particles (LAPs) deposited on the snow surface can effectively decrease snow albedo, resulting in positive radiative forcing. In this study, we used remote sensing data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) and the Snow, Ice, and Aerosol Radiative (SNICAR) model to quantify the reduction in snow albedo due to LAPs, before validating and correcting the data against in situ observations. We then incorporated these corrected albedo reduction data in the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model to estimate Northern Hemisphere radiative forcing in January and February for the period 2003–2018. Our analysis reveals an average corrected reduction in snow albedo of ~0.0246, with instantaneous radiative forcing and daily radiative forcing values of ~5.87 and ~1.69 W m−2, respectively. We also observed significant spatial variations in corrected snow albedo reduction, instantaneous radiative forcing and daily radiative forcing throughout the Northern Hemisphere, with the lowest respective values (~0.0123, ~1.09 W m−2, and ~0.29 W m−2) occurring in the Arctic and the highest (~0.1669, ~36.02 W m−2, and ~10.60 W m−2) in northeastern China. From MODIS retrievals, we determined that the LAP content of snow accounts for 57.6 % and 37.2 % of the spatial variability in Northern Hemisphere albedo reduction and radiative forcing, respectively. We also compared retrieved radiative forcing values with those of earlier studies, including local-scale observations, remote-sensing retrievals, and model-based estimates. Ultimately, estimates of radiative forcing based on satellite-retrieved data are shown to represent true conditions on both regional and global scales.


2021 ◽  
Author(s):  
Getachew Bayable ◽  
Getnet Alemu

Abstract The aggravating deforestation, industrialization and urbanization are increasingly becoming the principal causes for environmental challenges worldwide. As a result, satellite-based remote sensing helps to explore the environmental challenges spatially and temporally. This investigation analyzed the spatiotemporal discrepancies in Land Surface Temperature (LST) and the link with elevation in Amhara region, Ethiopia. The Moderate Resolution Imaging Spectroradiometer (MODIS) LST data (2001–2020) was used. The pixel-based linear regression model was employed to explore the spatiotemporal discrepancies of LST changes pixel-wise. Furthermore, Sen's slope and Mann-Kendall were used for determining the extent of temporal shifts of the areal average LST and evaluating trends in areal average LST values, respectively. Coefficient of Variation (CV) was calculated to examine spatial and temporal discrepancies in seasonal and annual LST for each pixel. The distribution of average seasonal LST spatially ranged from 43.45–16.62℃, 39.89–14.59℃, 50.39-21.102℃ and 43.164–20.39℃ for autumn (September-November), summer (June-August), spring (March-May) and winter (December-February) seasons, respectively. The seasonal LST CV varied from1.096-10.72%, 0.7–11.06%, 1.29–14.76% and 2.19–10.35% for average autumn, summer, spring and winter seasons, respectively. The seasonal spatial LST trend varied from − 0.7 − 0.16, -0.4-0.224, 0.6 − 0.19 and − 0.6 − 0.32 for average autumn, summer, spring and winter seasons, respectively. Besides, the annual spatial LST slope varied from − 0.58 − 0.17. An insignificantly declining trend in LST shown at 0.036℃ yr− 1, 0.041℃ yr− 1, 0.074℃ yr− 1, 0.005℃ yr− 1 in autumn, summer, spring and winter seasons (P < 0.05), respectively. Moreover, the annual variations of mean LST decreased insignificantly at 0.046℃ yr− 1. Generally, the LST is tremendously variable in space and time and negatively correlated with an elevation.


2013 ◽  
Vol 13 (15) ◽  
pp. 7895-7901 ◽  
Author(s):  
A. Arola ◽  
T. F. Eck ◽  
J. Huttunen ◽  
K. E. J. Lehtinen ◽  
A. V. Lindfors ◽  
...  

Abstract. The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally. We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was typically around 0.1–0.2 W m−2 (both positive and negative) in absolute values, 5–10% in relative ones.


Sign in / Sign up

Export Citation Format

Share Document