scholarly journals Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

2016 ◽  
Vol 16 (2) ◽  
pp. 455-504 ◽  
Author(s):  
M. Mallet ◽  
F. Dulac ◽  
P. Formenti ◽  
P. Nabat ◽  
J. Sciare ◽  
...  

Abstract. The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high levels of atmospheric pollutants or intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign, with the main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 and 0.6 (at 440 nm) over the western and central Mediterranean basins. One important point of this experiment concerns the direct observations of aerosol extinction onboard the ATR-42, using the CAPS system, showing local maxima reaching up to 150 M m−1 within the dust plume. Non-negligible aerosol extinction (about 50 M m−1) has also been observed within the marine boundary layer (MBL). By combining the ATR-42 extinction coefficient observations with absorption and scattering measurements, we performed a complete optical closure revealing excellent agreement with estimated optical properties. This additional information on extinction properties has allowed calculation of the dust single scattering albedo (SSA) with a high level of confidence over the western Mediterranean. Our results show a moderate variability from 0.90 to 1.00 (at 530 nm) for all flights studied compared to that reported in the literature on this optical parameter. Our results underline also a relatively low difference in SSA with values derived near dust sources. In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea spray and pollution located within the MBL, and mineral dust and/or aged North American smoke particles located above (up to 6–7 km in altitude). Aircraft and balloon-borne observations allow one to investigate the vertical structure of the aerosol size distribution showing particles characterized by a large size (> 10 µm in diameter) within dust plumes. In most of cases, a coarse mode characterized by an effective diameter ranging between 5 and 10 µm, has been detected above the MBL. In terms of shortwave (SW) direct forcing, in situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the aerosol direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to −90 W m−2 at noon). Aircraft observations provide also original estimates of the vertical structure of SW and LW radiative heating revealing significant instantaneous values of about 5° K per day in the solar spectrum (for a solar angle of 30°) within the dust layer. Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about −10 to −20 W m−2 (for the whole period) over the Mediterranean Sea together with maxima (−50 W m−2) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa. Finally, a multi-year simulation, performed for the 2003 to 2009 period and including an ocean–atmosphere (O–A) coupling, underlines the impact of the aerosol direct radiative forcing on the sea surface temperature, O–A fluxes and the hydrological cycle over the Mediterranean.

2015 ◽  
Vol 15 (14) ◽  
pp. 19615-19727 ◽  
Author(s):  
M. Mallet ◽  
F. Dulac ◽  
P. Formenti ◽  
P. Nabat ◽  
J. Sciare ◽  
...  

Abstract. The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental set-up also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modelling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to produce high level of atmospheric pollutants nor intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign with main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 to 0.6 (at 440 nm) over the western and central Mediterranean basins. Associated aerosol extinction values measured on-board the ATR-42 within the dust plume show local maxima reaching up to 150 Mm−1. Non negligible aerosol extinction (about 50 Mm−1) was also been observed within the Marine Boundary Layer (MBL). By combining ATR-42 extinction, absorption and scattering measurements, a complete optical closure has been made revealing excellent agreement with estimated optical properties. Associated calculations of the dust single scattering albedo (SSA) have been conducted, which show a moderate variability (from 0.90 to 1.00 at 530 nm). In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea-salt and pollution located within the MBL, and mineral dust and/or aged north American smoke particles located above (up to 6–7 km in altitude). Aircraft and balloon-borne observations show particle size distributions characterized by large aerosols (> 10 μm in diameter) within dust plumes. In terms of shortwave (SW) direct forcing, in-situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to −90 W m−2 at noon). Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with measurements/observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about −10 to −20 W m−2 (for the whole period) over the Mediterranean Sea together with maxima (−50 W m−2) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa.


2020 ◽  
Author(s):  
Lucia Timea Deaconu ◽  
Duncan Watson-Parris ◽  
Philip Stier ◽  
Lindsay Lee

<p>Absorbing aerosols affect the climate system (radiative forcing, cloud formation, precipitation and more) by strongly absorbing solar radiation, particularly at ultraviolet and visible wavelengths. The environmental impacts of an absorbing aerosol layer are influenced by its single scattering albedo (SSA), the albedo of the underlying surface, and also by the atmospheric residence time and column concentration of the aerosols.</p><p>Black-carbon (BC), the collective term used for strongly absorbing, carbonaceous aerosols, emitted by incomplete combustion of fossil fuel, biofuel and biomass, is a significant contributor to atmospheric absorption and probably a main-driver in inter-model differences and large uncertainties in estimating the aerosol radiative forcing due to aerosol-radiation interaction (RFari). Estimates of BC direct radiative forcing suggest a positive effect of +0.71 Wm<sup>-2</sup> (Bond and Bergstrom (2006)) with large uncertainties [+0.08, +1.27] Wm<sup>-2</sup>. These uncertainties result from poor estimates of BC atmospheric burden (emissions and removal rates) and its radiative properties. The uncertainty in the burden is due to the uncertainty in emissions (7.5 [2, 29] Tg yr<sup>-1</sup>) and lifetime (removal rates). In comparison with the available observations, global climate models (GCMs) tend to under-predict absorption near source (e.g. at AERONET stations), and over-predict concentrations in remote regions (e.g. as measured by aircraft campaigns). This may be due to GCM’s weak emissions at the source, but longer lifetime of aerosols in the atmosphere.</p><p>This study aims to address the parametric uncertainty of GCMs and constrain the direct radiative forcing using a perturbed parameter ensemble (PPE) and a collection of observations, from remote sensing to in-situ measurements. Total atmospheric aerosol extinction is quantified using satellite observations that provide aerosol optical depth (AOD), while the SSA is constrained by the use of high-temporal resolution aerosol absorption optical depth (AAOD) measured with AERONET sun-photometers (for near-source columnar information of aerosol absorption) and airborne black-carbon in-situ measurements collected and synthesised in the Global Aerosol Synthesis and Science Project (GASSP) (for properties of long-range transported aerosols). Measurements from the airborne campaigns ATOM and HIPPO are valuable for constraining aerosol absorption in remote areas, while CLARIFY and ORACLES, that were employed over Southeast Atlantic, are considered in our study for near source observations of biomass burning aerosols transported over the bright surface of stratocumulus clouds.</p><p>Using the PPE to explore the uncertainties in the aerosol absorption as well as the dominant emission and removal processes, and by comparing with a variety of observations we have confidence to better constrain the aerosol direct radiative forcing.</p>


2012 ◽  
Vol 12 (21) ◽  
pp. 10545-10567 ◽  
Author(s):  
P. Nabat ◽  
F. Solmon ◽  
M. Mallet ◽  
J. F. Kok ◽  
S. Somot

Abstract. The present study investigates the dust emission and load over the Mediterranean basin using the coupled chemistry–aerosol–regional climate model RegCM-4. The first step of this work focuses on dust particle emission size distribution modeling. We compare a parameterization in which the emission is based on the individual kinetic energy of the aggregates striking the surface to a recent parameterization based on an analogy with the fragmentation of brittle materials. The main difference between the two dust schemes concerns the mass proportion of fine aerosol that is reduced in the case of the new dust parameterization, with consequences for optical properties. At the episodic scale, comparisons between RegCM-4 simulations, satellite and ground-based data show a clear improvement using the new dust distribution in terms of aerosol optical depth (AOD) values and geographic gradients. These results are confirmed at the seasonal scale for the investigated year 2008. This change of dust distribution has sensitive impacts on the simulated regional dust budget, notably dry dust deposition and the regional direct aerosol radiative forcing over the Mediterranean basin. In particular, we find that the new size distribution produces a higher dust deposition flux, and smaller top of atmosphere (TOA) dust radiative cooling. A multi-annual simulation is finally carried out using the new dust distribution over the period 2000–2009. The average SW radiative forcing over the Mediterranean Sea reaches −13.6 W m−2 at the surface, and −5.5 W m−2 at TOA. The LW radiative forcing is positive over the basin: 1.7 W m−2 on average over the Mediterranean Sea at the surface, and 0.6 W m−2 at TOA.


2019 ◽  
Vol 19 (6) ◽  
pp. 3707-3731 ◽  
Author(s):  
Thomas Drugé ◽  
Pierre Nabat ◽  
Marc Mallet ◽  
Samuel Somot

Abstract. Aerosols play an important role in Europe and the Mediterranean area where different sources of natural and anthropogenic particles are present. Among them ammonium and nitrate (A&N) aerosols may have a growing impact on regional climate. In this study, their representation in coarse and fine modes has been introduced in the prognostic aerosol scheme of the ALADIN-Climate regional model. This new aerosol scheme is evaluated over Europe and the Mediterranean Sea, using two twin simulations over the period 1979–2016 with and without A&N aerosols. This evaluation is performed at local and regional scales, using surface stations and satellite measurements. Despite an overestimate of the surface nitrate concentration, the model is able to reproduce its spatial pattern including local maxima (Benelux, Po Valley). Concerning the simulated aerosol optical depth (AOD), the inclusion of A&N aerosols significantly reduces the model bias compared to both AERONET stations and satellite data. Our results indicate that A&N aerosols can contribute up to 40 % of the total AOD550 over Europe, with an average of 0.07 (550 nm) over the period 2001–2016. Sensitivity studies suggest that biases still present are related to uncertainties associated with the annual cycle of A&N aerosol precursors (ammonia and nitric acid). The decrease in sulfate aerosol production over Europe since 1980 produces more free ammonia in the atmosphere leading to an increase in A&N concentrations over the studied period. Analyses of the different aerosol trends have shown for the first time to our knowledge that, since 2005 over Europe, A&N AOD550 and A&N shortwave (SW) direct radiative forcing (DRF) are found to be higher than sulfate and organics, making these the species with the highest AOD and the highest DRF. On average over the period 1979–2016, the A&N DRF is found to be about −1.7 W m−2 at the surface and −1.4 W m−2 at the top of the atmosphere (TOA) in all sky conditions over Europe, with regional maxima located at the surface over the Po Valley (−5 W m−2). Finally, the dimming effect of A&N aerosols is responsible for a cooling of about −0.2∘ C over Europe (summer), with a maximum of −0.4 ∘C over the Po Valley. Concerning precipitation, no significant impact of A&N aerosols has been found.


2017 ◽  
Vol 17 (2) ◽  
pp. 769-791 ◽  
Author(s):  
Athanasios Tsikerdekis ◽  
Prodromos Zanis ◽  
Allison L. Steiner ◽  
Fabien Solmon ◽  
Vassilis Amiridis ◽  
...  

Abstract. We investigate the sensitivity of aerosol representation in the regional climate model RegCM4 for two dust parameterizations for the period 2007–2014 over the Sahara and the Mediterranean. We apply two discretization methods of the dust size distribution keeping the total mass constant: (1) the default RegCM4 4-bin approach, where the size range of each bin is calculated using an equal, logarithmic separation of the total size range of dust, using the diameter of dust particles, and (2) a newly implemented 12-bin approach with each bin defined according to an isogradient method where the size ranges are dependent on the dry deposition velocity of dust particles. Increasing the number of transported dust size bins theoretically improves the representation of the physical properties of dust particles within the same size bin. Thus, more size bins improve the simulation of atmospheric processes. The radiative effects of dust over the area are discussed and evaluated with the CALIPSO dust optical depth (DOD). This study is among the first studies evaluating the vertical profile of simulated dust with a pure dust product. Reanalysis winds from ERA-Interim and the total precipitation flux from the Climate Research Unit (CRU) observational gridded database are used to evaluate and explain the discrepancies between model and observations. The new dust binning approach increases the dust column burden by 4 and 3 % for fine and coarse particles, respectively, which increases DOD by 10 % over the desert and the Mediterranean. Consequently, negative shortwave radiative forcing (RF) is enhanced by more than 10 % at the top of the atmosphere and by 1 to 5 % on the surface. Positive longwave RF locally increases by more than 0.1 W m−2 in a large portion of the Sahara, the northern part of the Arabian Peninsula and the Middle East. The four-bin isolog method is to some extent numerically efficient, nevertheless our work highlights that the simplified representation of the four-bin approach produces less dust optical depth and RF, a fact that should be taken into account by future studies of the same region.


2011 ◽  
Vol 4 (3) ◽  
pp. 3055-3081
Author(s):  
S. J. Cooper ◽  
T. J. Garrett

Abstract. In a prior paper (Cooper and Garrett, 2010), an infrared remote sensing technique was developed that quantifies the effective radius re of ice crystals in cirrus clouds. By accounting for a broad range of expected inversion uncertainties, this retrieval scheme isolates those radiometric signatures that can only occur if the cirrus has nominally "small" values of re below 20 μm. The method is applicable only for specific cloud and atmospheric conditions. However, it can be particularly useful in constraining in-situ estimates of cirrus cloud re obtained from aircraft. Recent studies suggest that airborne measurements may be compromised by the shattering of ice crystals on airborne instrument inlets, so robust, independent confirmation of these measurements is needed. Here, we expand the Cooper and Garrett (2010) retrieval scheme to identify ice clouds that are likely to have "large" values of re greater than 20 μm. Using MODIS observations, we then compare assessments of cirrus cloud re with in-situ measurements obtained during three test cases from the 2010 SpartICus campaign. In general, there is good agreement between retrievals and in-situ measurements for a "small" and "large" crystal case. For a more ambiguously "small" re case, the 2D-S cloud probe indicates values of re that are slightly larger than expected from infrared retrievals, possibly indicating a slight bias in the 2D-S results towards large particles. There is no evidence to support that an FSSP-100 with unmodified inlets produces measurements of re in cirrus that are strongly biased low, as has been claimed.


2019 ◽  
Author(s):  
André Ehrlich ◽  
Manfred Wendisch ◽  
Christof Lüpkes ◽  
Matthias Buschmann ◽  
Heiko Bozem ◽  
...  

Abstract. The Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) campaign was carried out North-West of Svalbard (Norway) between 23 May–26 June 2017. The objective of ACLOUD was to study Arctic boundary layer and mid-level clouds and their role in Arctic Amplification. Two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. Both aircraft were equipped with identical instrumentation for measurements of basic meteorological parameters, as well as for turbulent and and radiative energy fluxes. In addition, on Polar 5 active and passive remote sensing instruments were installed, while Polar 6 operated in situ instruments to characterize cloud and aerosol particles as well as trace gases. A detailed overview of the specifications, data processing, and data quality is provided here. It is shown, that the scientific analysis of the ACLOUD data benefits from the coordinated operation of both aircraft. By combining the cloud remote sensing techniques operated on Polar 5, the synergy of multiinstrument cloud retrieval is illustrated. The remote sensing methods are validated using truly collocated in situ and remote sensing observations. The data of identical instruments operated on both aircraft are merged to extend the spatial coverage of mean atmospheric quantities and turbulent and radiative flux measurement. Therefore, the data set of the ACLOUD campaign provides comprehensive in situ and remote sensing observations characterizing the cloudy Arctic atmosphere. All processed, 1 calibrated, and validated data are published in the world data center PANGAEA as instrument-separated data subsets (Ehrlich et al., 2019b, https://doi.org/10.1594/PANGAEA.902603).


2016 ◽  
Vol 113 (21) ◽  
pp. 5781-5790 ◽  
Author(s):  
John H. Seinfeld ◽  
Christopher Bretherton ◽  
Kenneth S. Carslaw ◽  
Hugh Coe ◽  
Paul J. DeMott ◽  
...  

The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.


2015 ◽  
Vol 15 (10) ◽  
pp. 5471-5483 ◽  
Author(s):  
E. T. Sena ◽  
P. Artaxo

Abstract. A new methodology was developed for obtaining daily retrievals of the direct radiative forcing of aerosols (24h-DARF) at the top of the atmosphere (TOA) using satellite remote sensing. Simultaneous CERES (Clouds and Earth's Radiant Energy System) shortwave flux at the top of the atmosphere and MODIS (Moderate Resolution Spectroradiometer) aerosol optical depth (AOD) retrievals were used. To analyse the impact of forest smoke on the radiation balance, this methodology was applied over the Amazonia during the peak of the biomass burning season from 2000 to 2009. To assess the spatial distribution of the DARF, background smoke-free scenes were selected. The fluxes at the TOA under clean conditions (Fcl) were estimated as a function of the illumination geometry (θ0) for each 0.5° × 0.5° grid cell. The instantaneous DARF was obtained as the difference between the clean (Fcl (θ0)) and the polluted flux at the TOA measured by CERES in each cell (Fpol (θ0)). The radiative transfer code SBDART (Santa Barbara DISORT Radiative Transfer model) was used to expand instantaneous DARFs to 24 h averages. This new methodology was applied to assess the DARF both at high temporal resolution and over a large area in Amazonia. The spatial distribution shows that the mean 24h-DARF can be as high as −30 W m−2 over some regions. The temporal variability of the 24h-DARF along the biomass burning season was also studied and showed large intraseasonal and interannual variability. We showed that our methodology considerably reduces statistical sources of uncertainties in the estimate of the DARF, when compared to previous approaches. DARF assessments using the new methodology agree well with ground-based measurements and radiative transfer models. This demonstrates the robustness of the new proposed methodology for assessing the radiative forcing for biomass burning aerosols. To our knowledge, this is the first time that satellite remote sensing assessments of the DARF have been compared with ground-based DARF estimates.


Sign in / Sign up

Export Citation Format

Share Document