scholarly journals Model simulation of ammonium and nitrate aerosols distribution in the Euro-Mediterranean region and their radiative and climatic effects over 1979–2016

2019 ◽  
Vol 19 (6) ◽  
pp. 3707-3731 ◽  
Author(s):  
Thomas Drugé ◽  
Pierre Nabat ◽  
Marc Mallet ◽  
Samuel Somot

Abstract. Aerosols play an important role in Europe and the Mediterranean area where different sources of natural and anthropogenic particles are present. Among them ammonium and nitrate (A&N) aerosols may have a growing impact on regional climate. In this study, their representation in coarse and fine modes has been introduced in the prognostic aerosol scheme of the ALADIN-Climate regional model. This new aerosol scheme is evaluated over Europe and the Mediterranean Sea, using two twin simulations over the period 1979–2016 with and without A&N aerosols. This evaluation is performed at local and regional scales, using surface stations and satellite measurements. Despite an overestimate of the surface nitrate concentration, the model is able to reproduce its spatial pattern including local maxima (Benelux, Po Valley). Concerning the simulated aerosol optical depth (AOD), the inclusion of A&N aerosols significantly reduces the model bias compared to both AERONET stations and satellite data. Our results indicate that A&N aerosols can contribute up to 40 % of the total AOD550 over Europe, with an average of 0.07 (550 nm) over the period 2001–2016. Sensitivity studies suggest that biases still present are related to uncertainties associated with the annual cycle of A&N aerosol precursors (ammonia and nitric acid). The decrease in sulfate aerosol production over Europe since 1980 produces more free ammonia in the atmosphere leading to an increase in A&N concentrations over the studied period. Analyses of the different aerosol trends have shown for the first time to our knowledge that, since 2005 over Europe, A&N AOD550 and A&N shortwave (SW) direct radiative forcing (DRF) are found to be higher than sulfate and organics, making these the species with the highest AOD and the highest DRF. On average over the period 1979–2016, the A&N DRF is found to be about −1.7 W m−2 at the surface and −1.4 W m−2 at the top of the atmosphere (TOA) in all sky conditions over Europe, with regional maxima located at the surface over the Po Valley (−5 W m−2). Finally, the dimming effect of A&N aerosols is responsible for a cooling of about −0.2∘ C over Europe (summer), with a maximum of −0.4 ∘C over the Po Valley. Concerning precipitation, no significant impact of A&N aerosols has been found.

2018 ◽  
Author(s):  
Thomas Drugé ◽  
Pierre Nabat ◽  
Marc Mallet ◽  
Samuel Somot

Abstract. Aerosols play an important role in Europe and the Mediterranean area where different sources of natural and anthropogenic particles are present. Among them ammonium and nitrate (A&N) aerosols may have a growing impact on regional climate. In this study, their representation in coarse and fine modes has been introduced in the prognostic aerosol scheme of the ALADIN-Climate regional model. This new aerosol scheme is evaluated over Europe and the Mediterranean Sea, using two twin simulations over the period 1979–2016 with and without A&N aerosols. This evaluation is performed at local and regional scales, using surface stations and satellite measurements. Despite an overestimate of the surface nitrate concentration, the model is able to reproduce its spatial pattern including local maxima (Benelux, Po valley). Concerning the simulated Aerosol Optical Depth (AOD), the inclusion of A&N aerosols significantly reduces the model bias compared to both AERONET stations and satellite data. Our results indicate that A&N aerosols can contribute up to 40 % to the total AOD550 over Europe, with an average of 0.07 (550 nm) over the period 2001–2016. Sensitivity studies suggest that biases still present are related to uncertainties associated with the annual cycle of A&N aerosol precursors (ammonia and nitric acid). The decrease of sulphate aerosol production over Europe since 1980 produces more free ammonia in the atmosphere leading to an increase in A&N concentrations over the studied period. Analyses of the different aerosol trends have shown for the first time to our knowledge, that since 2005 over Europe, A&N AOD550 and A&N Shortwave (SW) Direct Radiative Forcing (DRF) are found to be higher than sulphate and organics, becoming the species with the highest AOD and the highest DRF. On average over the period 1979–2016, the A&N DRF is found to be about −1.7 W m−2 at the surface and −1.4 W m−2 at the Top of the Atmosphere (TOA) in all-sky conditions over Europe, with regional maxima located at the surface over the Po valley (−5 W m−2). Finally, the dimming effect of A&N aerosols is responsible for a cooling of about −0.2 °C over Europe (summer), with a maximum of −0.4 °C over the Po valley. Concerning precipitations, no significant impact of A&N aerosols has been found.


2012 ◽  
Vol 12 (21) ◽  
pp. 10545-10567 ◽  
Author(s):  
P. Nabat ◽  
F. Solmon ◽  
M. Mallet ◽  
J. F. Kok ◽  
S. Somot

Abstract. The present study investigates the dust emission and load over the Mediterranean basin using the coupled chemistry–aerosol–regional climate model RegCM-4. The first step of this work focuses on dust particle emission size distribution modeling. We compare a parameterization in which the emission is based on the individual kinetic energy of the aggregates striking the surface to a recent parameterization based on an analogy with the fragmentation of brittle materials. The main difference between the two dust schemes concerns the mass proportion of fine aerosol that is reduced in the case of the new dust parameterization, with consequences for optical properties. At the episodic scale, comparisons between RegCM-4 simulations, satellite and ground-based data show a clear improvement using the new dust distribution in terms of aerosol optical depth (AOD) values and geographic gradients. These results are confirmed at the seasonal scale for the investigated year 2008. This change of dust distribution has sensitive impacts on the simulated regional dust budget, notably dry dust deposition and the regional direct aerosol radiative forcing over the Mediterranean basin. In particular, we find that the new size distribution produces a higher dust deposition flux, and smaller top of atmosphere (TOA) dust radiative cooling. A multi-annual simulation is finally carried out using the new dust distribution over the period 2000–2009. The average SW radiative forcing over the Mediterranean Sea reaches −13.6 W m−2 at the surface, and −5.5 W m−2 at TOA. The LW radiative forcing is positive over the basin: 1.7 W m−2 on average over the Mediterranean Sea at the surface, and 0.6 W m−2 at TOA.


2017 ◽  
Vol 17 (2) ◽  
pp. 769-791 ◽  
Author(s):  
Athanasios Tsikerdekis ◽  
Prodromos Zanis ◽  
Allison L. Steiner ◽  
Fabien Solmon ◽  
Vassilis Amiridis ◽  
...  

Abstract. We investigate the sensitivity of aerosol representation in the regional climate model RegCM4 for two dust parameterizations for the period 2007–2014 over the Sahara and the Mediterranean. We apply two discretization methods of the dust size distribution keeping the total mass constant: (1) the default RegCM4 4-bin approach, where the size range of each bin is calculated using an equal, logarithmic separation of the total size range of dust, using the diameter of dust particles, and (2) a newly implemented 12-bin approach with each bin defined according to an isogradient method where the size ranges are dependent on the dry deposition velocity of dust particles. Increasing the number of transported dust size bins theoretically improves the representation of the physical properties of dust particles within the same size bin. Thus, more size bins improve the simulation of atmospheric processes. The radiative effects of dust over the area are discussed and evaluated with the CALIPSO dust optical depth (DOD). This study is among the first studies evaluating the vertical profile of simulated dust with a pure dust product. Reanalysis winds from ERA-Interim and the total precipitation flux from the Climate Research Unit (CRU) observational gridded database are used to evaluate and explain the discrepancies between model and observations. The new dust binning approach increases the dust column burden by 4 and 3 % for fine and coarse particles, respectively, which increases DOD by 10 % over the desert and the Mediterranean. Consequently, negative shortwave radiative forcing (RF) is enhanced by more than 10 % at the top of the atmosphere and by 1 to 5 % on the surface. Positive longwave RF locally increases by more than 0.1 W m−2 in a large portion of the Sahara, the northern part of the Arabian Peninsula and the Middle East. The four-bin isolog method is to some extent numerically efficient, nevertheless our work highlights that the simplified representation of the four-bin approach produces less dust optical depth and RF, a fact that should be taken into account by future studies of the same region.


2016 ◽  
Vol 16 (2) ◽  
pp. 455-504 ◽  
Author(s):  
M. Mallet ◽  
F. Dulac ◽  
P. Formenti ◽  
P. Nabat ◽  
J. Sciare ◽  
...  

Abstract. The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high levels of atmospheric pollutants or intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign, with the main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 and 0.6 (at 440 nm) over the western and central Mediterranean basins. One important point of this experiment concerns the direct observations of aerosol extinction onboard the ATR-42, using the CAPS system, showing local maxima reaching up to 150 M m−1 within the dust plume. Non-negligible aerosol extinction (about 50 M m−1) has also been observed within the marine boundary layer (MBL). By combining the ATR-42 extinction coefficient observations with absorption and scattering measurements, we performed a complete optical closure revealing excellent agreement with estimated optical properties. This additional information on extinction properties has allowed calculation of the dust single scattering albedo (SSA) with a high level of confidence over the western Mediterranean. Our results show a moderate variability from 0.90 to 1.00 (at 530 nm) for all flights studied compared to that reported in the literature on this optical parameter. Our results underline also a relatively low difference in SSA with values derived near dust sources. In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea spray and pollution located within the MBL, and mineral dust and/or aged North American smoke particles located above (up to 6–7 km in altitude). Aircraft and balloon-borne observations allow one to investigate the vertical structure of the aerosol size distribution showing particles characterized by a large size (> 10 µm in diameter) within dust plumes. In most of cases, a coarse mode characterized by an effective diameter ranging between 5 and 10 µm, has been detected above the MBL. In terms of shortwave (SW) direct forcing, in situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the aerosol direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to −90 W m−2 at noon). Aircraft observations provide also original estimates of the vertical structure of SW and LW radiative heating revealing significant instantaneous values of about 5° K per day in the solar spectrum (for a solar angle of 30°) within the dust layer. Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about −10 to −20 W m−2 (for the whole period) over the Mediterranean Sea together with maxima (−50 W m−2) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa. Finally, a multi-year simulation, performed for the 2003 to 2009 period and including an ocean–atmosphere (O–A) coupling, underlines the impact of the aerosol direct radiative forcing on the sea surface temperature, O–A fluxes and the hydrological cycle over the Mediterranean.


2019 ◽  
Vol 19 (7) ◽  
pp. 4459-4484 ◽  
Author(s):  
Arineh Cholakian ◽  
Augustin Colette ◽  
Isabelle Coll ◽  
Giancarlo Ciarelli ◽  
Matthias Beekmann

Abstract. Multiple CMIP5 (Coupled Model Intercomparison Project phase 5) future scenarios run with the CHIMERE chemistry transport model (CTM) are compared to historic simulations in order to study some of the drivers governing air pollution. Here, the focus is on regional climate, anthropogenic emissions and long-range transport. Two major subdomains are explored – the European region and the Mediterranean Basin – with both areas showing high sensitivity to climate change. The Mediterranean area is explored in the context of the ChArMEx (the Chemistry Aerosol Mediterranean Experiment) project, which examines the current and future meteorological and chemical conditions of the Mediterranean area. This climate impact study covers the period from 2031 to 2100 and considers possible future scenarios in comparison with 1976 to 2005 historic simulations using three Representative Concentration Pathways (RCPs; RCP2.6, RCP4.5 and RCP8.5). A detailed analysis of total PM10 (particulate matter with a diameter smaller that 10 µm) concentrations is carried out, including the evolution of PM10 and changes to its composition. The individual effects of meteorological conditions on PM10 components are explored in these scenarios in an effort to pinpoint the meteorological parameter(s) governing each component. The anthropogenic emission impact study covers the period from 2046 to 2055 using current legislation (CLE) and maximum feasible reduction (MFR) anthropogenic emissions for the year 2050 compared with historic simulations covering the period from 1996 to 2005 and utilizing CLE2010 emissions data. Long-range transport is explored by changing the boundary conditions in the chemistry transport model over the same period as the emission impact studies. Finally, a cumulative effect analysis of these drivers is performed, and the impact of each driver on PM10 and its components is estimated. The results show that regional climate change causes a decrease in the PM10 concentrations in our scenarios (in both the European and Mediterranean subdomains), as a result of a decrease in nitrate, sulfate, ammonium and dust atmospheric concentrations in most scenarios. On the contrary, BSOA (biogenic secondary organic aerosol) displays an important increase in all scenarios, showing more pronounced concentrations for the European subdomain compared with the Mediterranean region. Regarding the relationship of different meteorological parameters to concentrations of different species, nitrate and BSOA show a strong temperature dependence, whereas sulfate is most strongly correlated with relative humidity. The temperature-dependent behavior of BSOA changes when looking at the Mediterranean subdomain, where it displays more dependence on wind speed, due to the transported nature of BSOA existing in this subdomain. A cumulative look at all drivers shows that anthropogenic emission changes overshadow changes caused by climate and long-range transport for both of the subdomains explored, with the exception of dust particles for which long-range transport changes are more influential, especially in the Mediterranean Basin. For certain species (such as sulfates and BSOA), in most of the subdomains explored, the changes caused by anthropogenic emissions are (to a certain extent) reduced by the boundary conditions and regional climate changes.


2012 ◽  
Vol 8 (2) ◽  
pp. 1301-1318
Author(s):  
D. Swingedouw ◽  
L. Terray ◽  
J. Servonnat ◽  
J. Guiot

Abstract. A simulation of the last millennium is compared to a recent spatio-temporal reconstruction of summer temperature over Europe. The focus is on the response to solar forcing over the pre-industrial era. Although the correlation between solar forcing and the reconstruction remains small, the spatial regression over solar forcing shows statistically significant regions. The meridional pattern of this regression is found to be similar in the model and in the reconstruction. This pattern exhibits a large warming over Northern and Mediterranean Europe and a lesser amplitude response over Central Europe. The mechanisms explaining this pattern in the simulation are mainly related to evapotranspiration fluxes. It is shown that the evapotranspiration is larger in summer over Central Europe when solar forcing increases, while it decreases over the Mediterranean area. The explanation for the evapotranspiration increase over Central Europe is found in the increase of winter precipitation there, leading to a soil moisture increase in spring. As a consequence, the evapotranspiration is larger in summer, which leads to an increase in cloud cover over this region, reducing the surface shortwave flux there and leading to less warming. Over the Mediterranean area, the surface shortwave flux increases with solar forcing, the soil becomes dryer and the evapotranspiration is reduced in summer leading to a larger increase in temperature. This effect appears to be overestimated in the model as compared to the reconstruction. Finally, the warming of Northern Europe is related to the albedo feedback due to sea-ice cover retreat with increasing solar forcing. These results show that the last millennium can be useful to evaluate the sensitivity of climate models to radiative forcing changes, using spatio-temporal reconstruction of climate.


2015 ◽  
Vol 15 (11) ◽  
pp. 6159-6182 ◽  
Author(s):  
L. Menut ◽  
S. Mailler ◽  
G. Siour ◽  
B. Bessagnet ◽  
S. Turquety ◽  
...  

Abstract. During the months of June and July 2013, over the Euro–Mediterranean area, the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project was dedicated to characterize the ozone and aerosol concentrations in the troposphere. It is first shown that this period was not highly polluted compared to previous summers in this region, with a moderate ozone production, no significant vegetation fire events and several precipitation periods scavenging the aerosol. The period is modeled with the WRF (Weather Research and Forecasting) and CHIMERE models, and their ability to quantify the observed pollution transport events is presented. The CHIMERE model simulating all kinds of sources (anthropogenic, biogenic, mineral dust, vegetation fires); the aerosol speciation, not available with the measurements, is presented: during the whole period, the aerosol was mainly constituted by mineral dust, sea salt and sulfates close to the surface and mainly by mineral dust in the troposphere. Compared to the AERONET (Aerosol Robotic Network) size distribution, it is shown that the model underestimates the coarse mode near mineral dust sources and overestimates the fine mode in the Mediterranean area, highlighting the need to improve the model representation of the aerosol size distribution both during emissions, long-range transport and deposition.


Sign in / Sign up

Export Citation Format

Share Document