scholarly journals Possible climatic implications of high-altitude black carbon emissions

2017 ◽  
Vol 17 (15) ◽  
pp. 9623-9644 ◽  
Author(s):  
Gaurav Govardhan ◽  
Sreedharan Krishnakumari Satheesh ◽  
Ravi Nanjundiah ◽  
Krishnaswamy Krishna Moorthy ◽  
Surendran Suresh Babu

Abstract. On account of its strong absorption of solar and terrestrial radiation, black carbon (BC) aerosol is known to impact large-scale systems, such as the Asian monsoon and the Himalayan glaciers, in addition to affecting the thermal structure of the lower atmosphere. While most studies focus on the near-surface abundance and impacts of BC, our study examines the implications of sharp and confined layers of high BC concentration (called elevated BC layers) at altitudes more than 4 km over the Indian region using the online regional chemistry transport model (WRF-Chem) simulations. These elevated BC layers were revealed in the recent in situ measurements using high-altitude balloons carried out on 17 March 2010, 8 January 2011 and 25 April 2011. Our study demonstrates that high-flying aircraft (with emissions from the regionally fine-tuned MACCity inventory) are the most likely cause of these elevated BC layers. Furthermore, we show that such aircraft-emitted BC can be transported to upper tropospheric or lower stratospheric heights ( ∼  17 km) aided by the strong monsoonal convection occurring over the region, which is known to overshoot the tropical tropopause, leading to the injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere. We show observational evidence for such an intrusion of tropospheric BC into the stratosphere over the Indian region using extinction coefficient and particle depolarisation ratio data from CALIOP Lidar on-board the CALIPSO satellite. We hypothesise that such intrusions of BC into the lower stratosphere and its consequent longer residence time in the stratosphere have significant implications for stratospheric ozone, especially considering the already reported ozone-depleting potential of BC.

2017 ◽  
Author(s):  
Gaurav Govardhan ◽  
Sreedharan Krishnakumari Satheesh ◽  
Ravi Nanjundiah ◽  
Krishnaswamy Krishna Moorthy ◽  
Surendran Suresh Babu

Abstract. On account of its strong absorption of solar and terrestrial radiations, Black Carbon (BC) aerosol is known to impact large scale systems such as the Asian monsoon, Himalayan glaciers etc, besides affecting the thermal structure of lower atmosphere. While most studies focus on the near-surface abundance and impacts of BC, our study, using online regional chemistry transport model (WRF-Chem) simulations, examines the implications of sharp and confined layers of high BC concentration (called elevated BC layers) at altitudes of about 4.5 km and 8 km over the Indian region, as revealed in the recent in-situ measurements using high-altitude balloons. Our study demonstrates, that emissions from high-flying aircrafts are the most likely cause of these elevated BC layers. Furthermore, we show that such aircraft-emitted BC can get transported to even upper tropospheric/lower stratospheric heights (~ 17 km) aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere. We show observational evidence for such an intrusion of tropospheric BC into the stratosphere over Indian region, using extinction coefficient and particle depolarization ratio data from CALIOP Lidar on-board the CALIPSO satellite. We hypothesise that such intrusions of BC to lower stratosphere and its consequent longer residence time in the stratosphere would have significant implications for stratospheric ozone, considering the already reported ozone depleting potential of BC.


Author(s):  
David J Beerling ◽  
Michael Harfoot ◽  
Barry Lomax ◽  
John A Pyle

The discovery of mutated palynomorphs in end-Permian rocks led to the hypothesis that the eruption of the Siberian Traps through older organic-rich sediments synthesized and released massive quantities of organohalogens, which caused widespread O 3 depletion and allowed increased terrestrial incidence of harmful ultraviolet-B radiation (UV-B, 280–315 nm; Visscher et al . 2004 Proc. Natl Acad. Sci. USA 101 , 12 952–12 956). Here, we use an extended version of the Cambridge two-dimensional chemistry–transport model to evaluate quantitatively this possibility along with two other potential causes of O 3 loss at this time: (i) direct effects of HCl release by the Siberian Traps and (ii) the indirect release of organohalogens from dispersed organic matter. According to our simulations, CH 3 Cl released from the heating of coals alone caused comparatively minor O 3 depletion (5–20% maximum) because this mechanism fails to deliver sufficiently large amounts of Cl into the stratosphere. The unusual explosive nature of the Siberian Traps, combined with the direct release of large quantities of HCl, depleted the model O 3 layer in the high northern latitudes by 33–55%, given a main eruptive phase of less than or equal to 200 kyr. Nevertheless, O 3 depletion was most extensive when HCl release from the Siberian Traps was combined with massive CH 3 Cl release synthesized from a large reservoir of dispersed organic matter in Siberian rocks. This suite of model experiments produced column O 3 depletion of 70–85% and 55–80% in the high northern and southern latitudes, respectively, given eruption durations of 100–200 kyr. On longer eruption time scales of 400–600 kyr, corresponding O 3 depletion was 30–40% and 20–30%, respectively. Calculated year-round increases in total near-surface biologically effective (BE) UV-B radiation following these reductions in O 3 layer range from 30–60 (kJ m −2  d −1 ) BE up to 50–100 (kJ m −2  d −1 ) BE . These ranges of daily UV-B doses appear sufficient to exert mutagenic effects on plants, especially if sustained over tens of thousands of years, unlike either rising temperatures or SO 2 concentrations.


2011 ◽  
Vol 11 (1) ◽  
pp. 363-373 ◽  
Author(s):  
H. Bencherif ◽  
L. El Amraoui ◽  
G. Kirgis ◽  
J. Leclair De Bellevue ◽  
A. Hauchecorne ◽  
...  

Abstract. This paper reports on an increase of ozone event observed over Kerguelen (49.4° S, 70.3° E) in relationship with large-scale isentropic transport. This is evidenced by ground-based observations (co-localised radiosonde and SAOZ experiments) together with satellite global observations (Aura/MLS) assimilated into MOCAGE, a Méteo-France model. The study is based on the analyses of the first ozonesonde experiment never recorded at the Kerguelen site within the framework of a French campaign called ROCK that took place from April to August 2008. Comparisons and interpretations of the observed event are supported by co-localised SAOZ observations, by global mapping of tracers (O3, N2O and columns of O3) from Aura/MLS and Aura/OMI experiments, and by model simulations of Ertel Potential Vorticity initialised by the ECMWF (European Centre for Medium-Range Weather Forecasts) data reanalyses. Satellite and ground-based observational data revealed a consistent increase of ozone in the local stratosphere by mid-April 2008. Additionally, Ozone (O3) and nitrous oxide (N2O) profiles obtained during January–May 2008 using the Microwave Limb Sounder (MLS) aboard the Aura satellite are assimilated into MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle), a global three-dimensional chemistry transport model of Météo-France. The assimilated total O3 values are consistent with SAOZ ground observations (within ±5%), and isentropic distributions of O3 match well with maps of advected potential vorticity (APV) derived from the MIMOSA model, a high-resolution advection transport model, and from the ECMWF reanalysis. The event studied seems to be related to the isentropic transport of air masses that took place simultaneously in the lower- and middle-stratosphere, respectively from the polar region and from the tropics to the mid-latitudes. In fact, the ozone increase observed by mid April 2008 resulted simultaneously: (1) from an equator-ward departure of polar air masses characterised with a high-ozone layer in the lower stratosphere (near the 475 K isentropic level), and (2) from a reverse isentropic transport from the tropics to mid- and high-latitudes in the upper stratosphere (nearby the 700 K level). The increase of ozone observed over Kerguelen from the 16-April ozonesonde profile is thus attributed to a concomitant isentropic transport of ozone in two stratospheric layers: the tropical air moving southward and reaching over Kerguelen in the upper stratosphere, and the polar air passing over the same area but in the lower stratosphere.


2019 ◽  
Author(s):  
Gaurav Govardhan ◽  
Sreedharan Krishnakumari Satheesh ◽  
Krishnaswamy Krishna Moorthy ◽  
Ravi Nanjundiah

Abstract. With a view to improving the performance of WRF-Chem over the Indian region in simulating BC (black Carbon) mass concentrations as well as its short-term variations, especially on diurnal scale, a region-specific diurnal variation scheme has been introduced in the model emissios and the performance of the modified simulations has been evaluated against high-resolution measurements carried out over 8 ARFI (Aerosol Radiative Forcing over India) network observatories spread across India for distinct seasons; pre-monsoon (represented by May), post-monsoon (represented by October) and winter (represented by December). In addition to an overall improvement in the simulated concentrations and their temporal variations, it has also been found that the effects of prescribing diurnally varying emissions on the simulated near-surface concentrations largely depend on the boundary layer turbulence. The effects are perceived fast (within about 2–3 hours) during the evening–early morning hours when the atmospheric boundary layer is shallow and convective mixing is weak, while they are delayed, taking as much as about 5–6 hours, during periods when the boundary layer is deep and convective mixing is strong. This information would also serve as an important input for agencies concerned with urban planning and pollution mitigation. Despite these improvements in the near-surface concentrations, the simulated columnar aerosol optical depth (AOD) still remains largely underestimated vis-a-vis the satellite retrieved products. These modifications will serve as a guideline for further model-improvement initiatives at regional scale.


2019 ◽  
Vol 19 (12) ◽  
pp. 8229-8241 ◽  
Author(s):  
Gaurav Govardhan ◽  
Sreedharan Krishnakumari Satheesh ◽  
Krishnaswamy Krishna Moorthy ◽  
Ravi Nanjundiah

Abstract. With a view to improving the performance of WRF-Chem over the Indian region in simulating BC (black carbon) mass concentrations as well as its short-term variations, especially on a diurnal scale, a region-specific diurnal variation scheme has been introduced in the model emissions and the performance of the modified simulations has been evaluated against high-resolution measurements carried out over eight ARFI (Aerosol Radiative Forcing over India) network observatories spread across India for distinct seasons: pre-monsoon (represented by May), post-monsoon (represented by October) and winter (represented by December). In addition to an overall improvement in the simulated concentrations and their temporal variations, we have also found that the effects of prescribing diurnally varying emissions on the simulated near-surface concentrations largely depend on the boundary layer turbulence. The effects are perceived quickly (within about 2–3 h) during the evening–early morning hours when the atmospheric boundary layer is shallow and convective mixing is weak, while they are delayed, taking as much as about 5–6 h, during periods when the boundary layer is deep and convective mixing is strong. This information would also serve as an important input for agencies concerned with urban planning and pollution mitigation. Despite these improvements in the near-surface concentrations, the simulated columnar aerosol optical depth (AOD) still remains largely underestimated vis-à-vis the satellite-retrieved products. These modifications will serve as a guideline for further model-improvement initiatives at a regional scale.


2021 ◽  
Author(s):  
Juan Cuesta ◽  
Lorenzo Costantino ◽  
Matthias Beekmann ◽  
Guillaume Siour ◽  
Laurent Menut ◽  
...  

Abstract. We present a comprehensive study integrating satellite observations of ozone pollution, in situ measurements and chemistry transport model simulations for quantifying the role of anthropogenic emission reductions during the COVID-19 lockdown in spring 2020 over Europe. Satellite observations are derived from the IASI+GOME2 multispectral synergism, which provides particularly enhanced sensitivity to near-surface ozone pollution. These observations are first analysed in terms of differences between the average on 1–15 April 2020, when the strictest lockdown restrictions took place, and the same period in 2019. They show clear enhancements of near-surface ozone in Central Europe and Northern Italy, and some other hotspots, which are typically characterized by VOC-limited chemical regimes. An overall reduction of ozone is observed elsewhere, where ozone chemistry is limited by the abundance of NOx. The spatial distribution of positive and negative ozone concentration anomalies observed from space is in relatively good quantitative agreement with surface in situ measurements over the continent (a correlation coefficient of 0.55, a root-mean-squared difference of 11 ppb and the same standard deviation and range of variability). An average bias of ∼8 ppb between the two observational datasets is remarked, which can partly be explained by the fact the satellite approach retrieves partial columns of ozone with a peak sensitivity above the surface (near 2 km of altitude). For assessing the impact of the reduction of anthropogenic emissions during the lockdown, we adjust the satellite and in situ surface observations for withdrawing the influence of meteorological conditions in 2020 and 2019. This adjustment is derived from the chemistry transport model simulations using the meteorological fields of each year and identical emission inventories. This observational estimate of the influence of lockdown emission reduction is consistent for both datasets. They both show lockdown-associated ozone enhancements in hotspots over Central Europe and Northern Italy, with a reduced amplitude with respect to the total changes observed between the two years, and an overall reduction elsewhere over Europe and the ocean. Satellite observations additionally highlight the ozone anomalies in the regions remote from in situ sensors, an enhancement over the Mediterranean likely associated with maritime traffic emissions and a marked large-scale reduction of ozone elsewhere over ocean (particularly over the North Sea), in consistency with previous assessments done with ozonesondes measurements in the free troposphere. These observational assessments are compared with model-only estimations, using the CHIMERE chemistry transport model. For analysing the uncertainty of the model estimates, we perform two sets of simulations with different setups, differing in the emission inventories, their modifications to account for changes in anthropogenic activities during the lockdown and the meteorological fields. Whereas a general qualitative consistency of positive and negative ozone anomalies is remarked between all model and observational estimates, significant changes are seen in their amplitudes. Models underestimate the range of variability of the ozone changes by at least a factor 2 with respect to the two observational data sets, both for enhancements and decreases of ozone, while the large-scale ozone decrease is not simulated. With one of the setups, the model simulates ozone enhancements a factor 3 to 6 smaller than with the other configuration. This is partly linked to the emission inventories of ozone precursors (at least a 30 % difference), but mainly to differences in vertical mixing of atmospheric constituents depending on the choice of the meteorological model.


2006 ◽  
Vol 6 (4) ◽  
pp. 6627-6694
Author(s):  
J. P. McCormack ◽  
S. D. Eckermann ◽  
D. E. Siskind ◽  
T. J. McGee

Abstract. The new CHEM2D-Ozone Photochemistry Parameterization (CHEM2D-OPP) for high-altitude numerical weather prediction (NWP) systems and climate models specifies the net ozone photochemical tendency and its sensitivity to changes in ozone mixing ratio, temperature and overhead ozone column based on calculations from the CHEM2D interactive middle atmospheric photochemical transport model. We evaluate CHEM2D-OPP performance using both short-term (6-day) and long-term (1-year) stratospheric ozone simulations with the prototype high-altitude NOGAPS-ALPHA forecast model. An inter-comparison of NOGAPS-ALPHA 6-day ozone hindcasts for 7 February 2005 with ozone photochemistry parameterizations currently used in operational NWP systems shows that CHEM2D-OPP yields the best overall agreement with Aura Microwave Limb Sounder ozone profile measurements. A 1-year free-running NOGAPS-ALPHA simulation using CHEM2D-OPP produces a realistic seasonal cycle in zonal mean ozone throughout the stratosphere. We find that the combination of a model cold temperature bias at high latitudes in winter and a warm bias in the CHEM2D-OPP temperature climatology can degrade the performance of the linearized ozone photochemistry parameterization over seasonal time scales despite the fact that the parameterized temperature dependence is weak in these regions.


2014 ◽  
Vol 8 (2) ◽  
pp. 387-394 ◽  
Author(s):  
M. Schirmer ◽  
B. Jamieson

Abstract. Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other heterogeneities, we were unable to create a sufficiently planar snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.


2006 ◽  
Vol 6 (12) ◽  
pp. 4943-4972 ◽  
Author(s):  
J. P. McCormack ◽  
S. D. Eckermann ◽  
D. E. Siskind ◽  
T. J. McGee

Abstract. The new CHEM2D-Ozone Photochemistry Parameterization (CHEM2D-OPP) for high-altitude numerical weather prediction (NWP) systems and climate models specifies the net ozone photochemical tendency and its sensitivity to changes in ozone mixing ratio, temperature and overhead ozone column based on calculations from the CHEM2D interactive middle atmospheric photochemical transport model. We evaluate CHEM2D-OPP performance using both short-term (6-day) and long-term (1-year) stratospheric ozone simulations with the prototype high-altitude NOGAPS-ALPHA forecast model. An inter-comparison of NOGAPS-ALPHA 6-day ozone hindcasts for 7 February 2005 with ozone photochemistry parameterizations currently used in operational NWP systems shows that CHEM2D-OPP yields the best overall agreement with both individual Aura Microwave Limb Sounder ozone profile measurements and independent hemispheric (10°–90° N) ozone analysis fields. A 1-year free-running NOGAPS-ALPHA simulation using CHEM2D-OPP produces a realistic seasonal cycle in zonal mean ozone throughout the stratosphere. We find that the combination of a model cold temperature bias at high latitudes in winter and a warm bias in the CHEM2D-OPP temperature climatology can degrade the performance of the linearized ozone photochemistry parameterization over seasonal time scales despite the fact that the parameterized temperature dependence is weak in these regions.


2013 ◽  
Vol 13 (7) ◽  
pp. 3547-3567 ◽  
Author(s):  
M. C. Zatko ◽  
T. C. Grenfell ◽  
B. Alexander ◽  
S. J. Doherty ◽  
J. L. Thomas ◽  
...  

Abstract. We use observations of the absorption properties of black carbon and non-black carbon impurities in near-surface snow collected near the research stations at South Pole and Dome C, Antarctica, and Summit, Greenland, combined with a snowpack actinic flux parameterization to estimate the vertical profile and e-folding depth of ultraviolet/near-visible (UV/near-vis) actinic flux in the snowpack at each location. We have developed a simple and broadly applicable parameterization to calculate depth and wavelength dependent snowpack actinic flux that can be easily integrated into large-scale (e.g., 3-D) models of the atmosphere. The calculated e-folding depths of actinic flux at 305 nm, the peak wavelength of nitrate photolysis in the snowpack, are 8–12 cm near the stations and 15–31 cm away (>11 km) from the stations. We find that the e-folding depth is strongly dependent on impurity content and wavelength in the UV/near-vis region, which explains the relatively shallow e-folding depths near stations where local activities lead to higher snow impurity levels. We calculate the lifetime of NOx in the snowpack interstitial air produced by photolysis of snowpack nitrate against wind pumping (τwind pumping) from the snowpack, and compare this to the calculated lifetime of NOx against chemical conversion to HNO3 (τchemical) to determine whether the NOx produced at a given depth can escape from the snowpack to the overlying atmosphere. Comparison of τwind pumping and τchemical suggests efficient escape of photoproduced NOx in the snowpack to the overlying atmosphere throughout most of the photochemically active zone. Calculated vertical actinic flux profiles and observed snowpack nitrate concentrations are used to estimate the potential flux of NOx from the snowpack. Calculated NOx fluxes of 4.4 × 108–3.8 × 109 molecules cm−2 s−1 in remote polar locations and 3.2–8.2 × 108 molecules cm−2 s−1 near polar stations for January at Dome C and South Pole and June at Summit suggest that NOx flux measurements near stations may be underestimating the amount of NOx emitted from the clean polar snowpack.


Sign in / Sign up

Export Citation Format

Share Document