scholarly journals Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM<sub>2.5</sub> during winter heavy pollution episodes in Beijing from 2013 to 2016

2018 ◽  
Vol 18 (1) ◽  
pp. 247-258 ◽  
Author(s):  
Junting Zhong ◽  
Xiaoye Zhang ◽  
Yunsheng Dong ◽  
Yaqiang Wang ◽  
Cheng Liu ◽  
...  

Abstract. In January 2013, February 2014, December 2015 and December 2016 to 10 January 2017, 12 persistent heavy aerosol pollution episodes (HPEs) occurred in Beijing, which received special attention from the public. During the HPEs, the precise cause of PM2.5 explosive growth (mass concentration at least doubled in several hours to 10 h) is uncertain. Here, we analyzed and estimated relative contributions of boundary-layer meteorological factors to such growth, using ground and vertical meteorological data. Beijing HPEs are generally characterized by the transport stage (TS), whose aerosol pollution formation is primarily caused by pollutants transported from the south of Beijing, and the cumulative stage (CS), in which the cumulative explosive growth of PM2.5 mass is dominated by stable atmospheric stratification characteristics of southerly slight or calm winds, near-ground anomalous inversion, and moisture accumulation. During the CSs, observed southerly weak winds facilitate local pollutant accumulation by minimizing horizontal pollutant diffusion. Established by TSs, elevated PM2.5 levels scatter more solar radiation back to space to reduce near-ground temperature, which very likely causes anomalous inversion. This surface cooling by PM2.5 decreases near-ground saturation vapor pressure and increases relative humidity significantly; the inversion subsequently reduces vertical turbulent diffusion and boundary-layer height to trap pollutants and accumulate water vapor. Appreciable near-ground moisture accumulation (relative humidity> 80 %) would further enhance aerosol hygroscopic growth and accelerate liquid-phase and heterogeneous reactions, in which incompletely quantified chemical mechanisms need more investigation. The positive meteorological feedback noted on PM2.5 mass explains over 70 % of cumulative explosive growth.

2017 ◽  
Author(s):  
Junting Zhong ◽  
Xiaoye Zhang ◽  
Yunsheng Dong ◽  
Yaqiang Wang ◽  
Jizhi Wang ◽  
...  

Abstract. In January of 2013, February of 2014, December of 2015, and December of 2016 to January 10th of 2017, 12 persistent heavy aerosol pollution episodes (HPEs) occurred in Beijing, which has attracted special attention from the public. During the HPEs, the precise cause of explosive growth in fine particulate matter (PM) is uncertain. Here, we analyzed and estimated relative contributions of boundary-layer meteorological factors to such growth, using ground and vertical meteorological data. Beijing HPEs are generally characterized by the transport stage (TS), whose aerosol pollution formation is primarily caused by pollutants transported from the south of Beijing, and the cumulative stage (CS), in which the cumulative explosive growth (PM mass concentration doubled in ~ 10 hours) is dominated by stable atmospheric stratification characteristic of southerly slight or calm winds, near-ground anomalous inversion, and moisture accumulation. During the CSs, observed southerly weak winds facilitate local pollutant accumulation by limiting the invasion of northerly clean winds and minimizing horizontal pollutant diffusion. Established from TSs, elevated PM levels scatter more solar radiation back to the space to reduce near-ground temperature. This radiation reduction decreases near-ground saturation vapor pressure and very likely causes anomalous inversion. The decreased saturation pressure significantly increases relative humidity; the inversion subsequently reduces vertical turbulent diffusion and boundary layer height to trap pollutants and accumulate water vapor. Appreciable near-ground moisture accumulation (RH > 80 %) further enhances aerosol hygroscopic growth and accelerates liquid-phase and heterogeneous reactions, in which incompletely quantified chemical mechanisms need more investigation. Noted meteorological feedback on PM explains over 70 % in cumulative explosive growth of PM.


2018 ◽  
Vol 18 (8) ◽  
pp. 5991-5999 ◽  
Author(s):  
Xiaoye Zhang ◽  
Junting Zhong ◽  
Jizhi Wang ◽  
Yaqiang Wang ◽  
Yanju Liu

Abstract. The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol–radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ∼ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022). More stringent emission reduction measures will need to be conducted by the government.


2021 ◽  
Vol 21 (4) ◽  
pp. 2491-2508
Author(s):  
Xiaoyan Wang ◽  
Renhe Zhang ◽  
Yanke Tan ◽  
Wei Yu

Abstract. The variation in the concentrations of ambient PM2.5 (particles with an aerodynamic diameter less than 2.5 µm) generally forms a continuous sawtooth cycle with a recurring smooth increase followed by a sharp decrease. The episode of abrupt decay of pollution is mostly meteorological in origin and is controlled by the passage of synoptic systems. One affordable and effective measure for quickly reducing PM2.5 concentrations in northern China is to wait for a strong wind to arrive. However, it is still unclear how strong the wind needs to be and exactly what kind of synoptic system most effectively results in the rapid decay of air pollution episodes. PM2.5 variations over the 28 pollution channel cities of the Beijing region are investigated to determine the mechanisms by which synoptic patterns affect the decay processes of pollution episodes. This work shows more obvious day-to-day variations in PM2.5 concentration in winter than in summer, which implies that wintertime PM2.5 variations are more sensitive to meteorological factors. There were 365 decay processes from January 2014 to March 2020, and 97 of them were related to the effective wet deposition. In total, 26 %–43 % of PM2.5 pollutant is removed by the wet deposition in different seasons. Two dominant circulation patterns are identified in summer. All the other three seasons have three circulation types (CTs), respectively. The three CTs in spring show the same patterns as those in autumn and winter. The circulation patterns beneficial to the decay processes all exhibit a higher-than-normal surface wind speed, a negative relative humidity anomaly and net outflow of PM2.5 from the domain. In addition, CT1 in spring, autumn and winter is controlled by northeasterly wind and features the most significant horizontal net outflow of air pollutants and effective upward spread of air pollutants to the free atmosphere. CT2 is the most frequent CT in autumn and winter, with the highest wind speed from the northwest, highest boundary layer height (BLH) and lowest relative humidity among the three CTs, all of which are favorable for the reduction of PM2.5 concentrations. In CT3, strong vertical wind shear within the boundary layer enhances the mixing of surface air pollutants, which is the extra cleaning mechanism besides dry and clean air mass inflow. PM2.5 concentrations show significant decreases of more than 37 %, 41 % and 27 % after the passage of CT1, CT2 and CT3, respectively. A dry airflow with a positive BLH anomaly and the effective horizontal outflow of air pollutants are the main reasons for the abrupt decay phase in summer. PM2.5 concentrations after the decay process show a significant decreasing trend from 2014 to 2020, reflecting successful emission mitigation. Emission reductions have led to a 4.3–5.7 µgm-3yr-1 decrease in PM2.5 concentrations in the 28 pollution channel cities of the Beijing region.


2021 ◽  
Vol 15 (3) ◽  
pp. e0009217
Author(s):  
Wanwan Sun ◽  
Xiaobo Liu ◽  
Wen Li ◽  
Zhiyuan Mao ◽  
Jimin Sun ◽  
...  

Background Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne disease, is a severe public health threat. Previous studies have discovered the influence of meteorological factors on HFRS incidence, while few studies have concentrated on the stratified analysis of delayed effects and interaction effects of meteorological factors on HFRS. Objective Huludao City is a representative area in north China that suffers from HFRS with primary transmission by Rattus norvegicus. This study aimed to evaluate the climate factors of lag, interaction, and stratified effects of meteorological factors on HFRS incidence in Huludao City. Methods Our researchers collected meteorological data and epidemiological data of HFRS cases in Huludao City during 2007–2018. First, a distributed lag nonlinear model (DLNM) for a maximum lag of 16 weeks was developed to assess the respective lag effect of temperature, precipitation, and humidity on HFRS incidence. We then constructed a generalized additive model (GAM) to explore the interaction effect between temperature and the other two meteorological factors on HFRS incidence and the stratified effect of meteorological factors. Results During the study period, 2751 cases of HFRS were reported in Huludao City. The incidence of HFRS showed a seasonal trend and peak times from February to May. Using the median WAT, median WTP, and median WARH as the reference, the results of DLNM showed that extremely high temperature (97.5th percentile of WAT) had significant associations with HFRS at lag week 15 (RR = 1.68, 95% CI: 1.04–2.74) and lag week 16 (RR = 2.80, 95% CI: 1.31–5.95). Under the extremely low temperature (2.5th percentile of WAT), the RRs of HFRS infection were significant at lag week 5 (RR = 1.28, 95% CI: 1.01–1.67) and lag 6 weeks (RR = 1.24, 95% CI: 1.01–1.57). The RRs of relative humidity were statistically significant at lag week 10 (RR = 1.19, 95% CI: 1.00–1.43) and lag week 11 (RR = 1.24, 95% CI: 1.02–1.50) under extremely high relative humidity (97.5th percentile of WARH); however, no statistically significance was observed under extremely low relative humidity (2.5th percentile of WARH). The RRs were significantly high when WAT was -10 degrees Celsius (RR = 1.34, 95% CI: 1.02–1.76), -9 degrees Celsius (1.37, 95% CI: 1.04–1.79), and -8 degrees Celsius (RR = 1.34, 95% CI: 1.03–1.75) at lag week 5 and more than 23 degrees Celsius after 15 weeks. Interaction and stratified analyses showed that the risk of HFRS infection reached its highest when both temperature and precipitation were at a high level. Conclusions Our study indicates that meteorological factors, including temperature and humidity, have delayed effects on the occurrence of HFRS in the study area, and the effect of temperature can be modified by humidity and precipitation. Public health professionals should pay more attention to HFRS control when the weather conditions of high temperature with more substantial precipitation and 15 weeks after the temperature is higher than 23 degrees Celsius.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246023
Author(s):  
Li Qi ◽  
Tian Liu ◽  
Yuan Gao ◽  
Dechao Tian ◽  
Wenge Tang ◽  
...  

Background The effects of multiple meteorological factors on influenza activity remain unclear in Chongqing, the largest municipality in China. We aimed to fix this gap in this study. Methods Weekly meteorological data and influenza surveillance data in Chongqing were collected from 2012 to 2019. Distributed lag nonlinear models (DLNMs) were conducted to estimate the effects of multiple meteorological factors on influenza activity. Results Inverted J-shaped nonlinear associations between mean temperature, absolute humidity, wind speed, sunshine and influenza activity were found. The relative risks (RRs) of influenza activity increased as weekly average mean temperature fell below 18.18°C, average absolute humidity fell below 12.66 g/m3, average wind speed fell below 1.55 m/s and average sunshine fell below 2.36 hours. Taking the median values as the references, lower temperature, lower absolute humidity and windless could significantly increase the risks of influenza activity and last for 4 weeks. A J-shaped nonlinear association was observed between relative humidity and influenza activity; the risk of influenza activity increased with rising relative humidity with 78.26% as the break point. Taking the median value as the reference, high relative humidity could increase the risk of influenza activity and last for 3 weeks. In addition, we found the relationship between aggregate rainfall and influenza activity could be described with a U-shaped curve. Rainfall effect has significantly higher RR than rainless effect. Conclusions Our study shows that multiple meteorological factors have strong associations with influenza activity in Chongqing, providing evidence for developing a meteorology-based early warning system for influenza to facilitate timely response to upsurge of influenza activity.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6919 ◽  
Author(s):  
Ying-Long Bai ◽  
De-Sheng Huang ◽  
Jing Liu ◽  
De-Qiang Li ◽  
Peng Guan

Background This study aims to describe the epidemiological patterns of influenza-like illness (ILI) in Huludao, China and seek scientific evidence on the link of ILI activity with weather factors. Methods Surveillance data of ILI cases between January 2012 and December 2015 was collected in Huludao Central Hospital, meteorological data was obtained from the China Meteorological Data Service Center. Generalized additive model (GAM) was used to seek the relationship between the number of ILI cases and the meteorological factors. Multiple Smoothing parameter estimation was made on the basis of Poisson distribution, where the number of weekly ILI cases was treated as response, and the smoothness of weather was treated as covariates. Lag time was determined by the smallest Akaike information criterion (AIC). Smoothing coefficients were estimated for the prediction of the number of ILI cases. Results A total of 29, 622 ILI cases were observed during the study period, with children ILI cases constituted 86.77%. The association between ILI activity and meteorological factors varied across different lag periods. The lag time for average air temperature, maximum air temperature, minimum air temperature, vapor pressure and relative humidity were 2, 2, 1, 1 and 0 weeks, respectively. Average air temperature, maximum air temperature, minimum air temperature, vapor pressure and relative humidity could explain 16.5%, 9.5%, 18.0%, 15.9% and 7.7% of the deviance, respectively. Among the temperature indexes, the minimum temperature played the most important role. The number of ILI cases peaked when minimum temperature was around −13 °C in winter and 18 °C in summer. The number of cases peaked when the relative humidity was equal to 43% and then began to decrease with the increase of relative humidity. When the humidity exceeded 76%, the number of ILI cases began to rise. Conclusions The present study first analyzed the relationship between meteorological factors and ILI cases with special consideration of the length of lag period in Huludao, China. Low air temperature and low relative humidity (cold and dry weather condition) played a considerable role in the epidemic pattern of ILI cases. The trend of ILI activity could be possibly predicted by the variation of meteorological factors.


MAUSAM ◽  
2021 ◽  
Vol 62 (3) ◽  
pp. 391-402
Author(s):  
R.P. SAMUI ◽  
G. JOHN ◽  
S.P. RANSURE ◽  
M.A. PACHANKAR

Evaporation, rainfall and meteorological data for the period 1971-2004 for 58 well distributed stations over India were selected for the study. Trends of evaporation and rainfall in five regions, viz., Northwest, North, Northeast, Central and Peninsular regions of India during different crop growing seasons, viz., kharif, rabi and summer and the meteorological factors contributing towards the trend were analyzed. Annual evaporation shows decreasing trend in all the regions of the country. Trends in seasonal evaporation during kharif, rabi and summer seasons also showed decreasing trends in Northwest, North, Central and Peninsular regions of the country while few locations in Northeast India, viz., Guwahati, Dibrugarh and Tocklai showed significant increasing trend in evaporation during kharif and rabi seasons. No significant trend in annual and seasonal rainfall was observed in Indian region except a few stations in peninsular India where increasing trend was observed. Normalized anomalies of maximum temperature, relative humidity and vapour pressure showed increasing trend in Northwest and Northern regions during all the three crop growing seasons while decreasing trend or no trend in wind velocity was observed in all the regions except in central region where increasing trend was observed during summer season. As evaporation relates to the meteorological elements, viz., temperature, sunshine duration, wind velocity and relative humidity, the likely causative meteorological factors for such changes are studied. Increasing trends in maximum temperature was observed in central and peninsular inland regions of the country during rabi and summer seasons while slight decreasing trends were observed in the Northeast region during kharif season. High positive correlation found between maximum temperature and wind velocity indicates that the trend in evaporation is mostly influenced by these two factors. Increase in humidity and decrease in bright sunshine hours were both important and found correlated with the decrease in evaporation.


Sign in / Sign up

Export Citation Format

Share Document