scholarly journals Cloud responses to climate variability over the extratropical oceans as observed by MISR and MODIS

2019 ◽  
Vol 19 (11) ◽  
pp. 7547-7565 ◽  
Author(s):  
Andrew Geiss ◽  
Roger Marchand

Abstract. Linear temporal trends in cloud fraction over the extratropical oceans, observed by NASA's Multi-angle Imaging SpectroRadiometer (MISR) during the period from 2000 to 2013, are examined in the context of coincident European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data using a maximum covariance analysis. Changes in specific cloud types defined with respect to cloud-top height and cloud optical depth are related to trends in reanalysis variables. A pattern of reduced high-altitude optically thick cloud and increased low-altitude cloud of moderate optical depth is found to be associated with increased temperatures, geopotential heights, and anti-cyclonic flow over the extratropical oceans. These and other trends in cloud occurrence are shown to be correlated with changes in the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the North Pacific index (NPI), and the Southern Annular Mode (SAM).

2018 ◽  
Author(s):  
Andrew Geiss ◽  
Roger Marchand

Abstract. Linear temporal trends in cloud fraction over the extratropical oceans, observed by NASA's Multiangle Imaging Spectro-Radiometer (MISR) during the period 2000–2013, are examined in the context of coincident ECMWF reanalysis data using a maximum covariance analysis. Changes in specific cloud types defined with respect to cloud top height and cloud optical depth are related to trends in reanalysis variables. A pattern of reduced high altitude optically thick cloud and increased low altitude cloud of moderate optical depth is found to be associated with increased temperatures, geopotential heights, and anticyclonicity over the extratropical oceans. These and other trends in cloud occurrence are shown to be correlated with changes in the El Niño Southern Oscillation, the Pacific Decadal Oscillation, the North Pacific Index, and the Southern Annular Mode.


2021 ◽  
Author(s):  
Jake W. Casselman ◽  
Andréa S. Taschetto ◽  
Daniela I.V. Domeisen

<p>El Niño-Southern Oscillation can influence the Tropical North Atlantic (TNA), leading to anomalous sea surface temperatures (SST) at a lag of several months. Several mechanisms have been proposed to explain this teleconnection. These mechanisms include both tropical and extratropical pathways, contributing to anomalous trade winds and static stability over the TNA region. The TNA SST response to ENSO has been suggested to be nonlinear. Yet the overall linearity of the ENSO-TNA teleconnection via the two pathways remains unclear. Here we use reanalysis data to confirm that the SST anomaly (SSTA) in the TNA is nonlinear with respect to the strength of the SST forcing in the tropical Pacific, as further increases in El Niño magnitudes cease to create further increases of the TNA SSTA. We further show that the tropical pathway is more linear than the extratropical pathway by sub-dividing the inter-basin connection into extratropical and tropical pathways. The extratropical pathway is modulated by the North Atlantic Oscillation (NAO) and the location of the SSTA in the Pacific, but this modulation insufficiently explains the nonlinearity in TNA SSTA. As neither extratropical nor tropical pathways can explain the nonlinearity, this suggests that external factors are at play. Further analysis shows that the TNA SSTA is highly influenced by the preconditioning of the tropical Atlantic SST. This preconditioning is found to be associated with the NAO through SST-tripole patterns.</p>


2018 ◽  
Vol 76 (3) ◽  
pp. 626-638 ◽  
Author(s):  
J Anthony Koslow ◽  
Pete Davison ◽  
Erica Ferrer ◽  
S Patricia A Jiménez Rosenberg ◽  
Gerardo Aceves-Medina ◽  
...  

Abstract Declining oxygen concentrations in the deep ocean, particularly in areas with pronounced oxygen minimum zones (OMZs), are a growing global concern related to global climate change. Its potential impacts on marine life remain poorly understood. A previous study suggested that the abundance of a diverse suite of mesopelagic fishes off southern California was closely linked to trends in midwater oxygen concentration. This study expands the spatial and temporal scale of that analysis to examine how mesopelagic fishes are responding to declining oxygen levels in the California Current (CC) off central, southern, and Baja California. Several warm-water mesopelagic species, apparently adapted to the shallower, more intense OMZ off Baja California, are shown to be increasing despite declining midwater oxygen concentrations and becoming increasingly dominant, initially off Baja California and subsequently in the CC region to the north. Their increased abundance is associated with warming near-surface ocean temperature, the warm phase of the Pacific Decadal oscillation and Multivariate El Niño-Southern Oscillation Index, and the increased flux of Pacific Equatorial Water into the southern CC.


2017 ◽  
Author(s):  
Imogen M. Browne ◽  
Christopher M. Moy ◽  
Christina R. Riesselman ◽  
Helen L. Neil ◽  
Lorelei G. Curtin ◽  
...  

Abstract. The Southern Hemisphere westerly winds (SHWW) play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW) and outgassing of CO2 in the Southern Ocean on interannual to glacial-interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP) is limited by a scarcity of paleoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene variability in the SHWW using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E), located in the modern centre of the westerly wind belt. Drainage basin response to variability in the strength of the SHWW at this latitude is reconstructed from downcore variations in magnetic susceptibility (MS) and bulk organic δ13C and atomic C/N, which monitor influxes of lithogenous and terrestrial vs marine organic matter, respectively. The hydrographic response to SHWW variability is reconstructed using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from ~ 1600–900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of vegetation response to climate at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand at the beginning of the Little Ice Age (LIA). Comparison with paleoclimate and paleoceanographic records from southern South America and the western Antarctic Peninsula indicates a late Holocene strengthening of the SHWW after ~ 1600 yr BP that appears to be broadly symmetrical across the Pacific basin, although our reconstruction suggests that this symmetry breaks down during the LIA. Contemporaneous increases in SHWW at localities either side of the Pacific in the late Holocene are likely controlled atmospheric teleconnections between the low and high latitudes and by variability in the Southern Annular Mode (SAM) and El Niño Southern Oscillation (ENSO).


2013 ◽  
Vol 141 (10) ◽  
pp. 3610-3625 ◽  
Author(s):  
Kevin M. Grise ◽  
Seok-Woo Son ◽  
John R. Gyakum

Abstract Extratropical cyclones play a principal role in wintertime precipitation and severe weather over North America. On average, the greatest number of cyclones track 1) from the lee of the Rocky Mountains eastward across the Great Lakes and 2) over the Gulf Stream along the eastern coastline of North America. However, the cyclone tracks are highly variable within individual winters and between winter seasons. In this study, the authors apply a Lagrangian tracking algorithm to examine variability in extratropical cyclone tracks over North America during winter. A series of methodological criteria is used to isolate cyclone development and decay regions and to account for the elevated topography over western North America. The results confirm the signatures of four climate phenomena in the intraseasonal and interannual variability in North American cyclone tracks: the North Atlantic Oscillation (NAO), the El Niño–Southern Oscillation (ENSO), the Pacific–North American pattern (PNA), and the Madden–Julian oscillation (MJO). Similar signatures are found using Eulerian bandpass-filtered eddy variances. Variability in the number of extratropical cyclones at most locations in North America is linked to fluctuations in Rossby wave trains extending from the central tropical Pacific Ocean. Only over the far northeastern United States and northeastern Canada is cyclone variability strongly linked to the NAO. The results suggest that Pacific sector variability (ENSO, PNA, and MJO) is a key contributor to intraseasonal and interannual variability in the frequency of extratropical cyclones at most locations across North America.


2010 ◽  
Vol 32 (2) ◽  
pp. 215 ◽  
Author(s):  
S. T. Garnett ◽  
G. Williamson

The patterns of rainfall early in the rainy season vary substantially across northern Australia, even in sites with the same annual average. This has biophysical and economic implications in terms of land and infrastructure management, resource availability and capacity, and access. Daily patterns in long-term rainfall records in Australia north of 23°S subject to regular monsoonal rainfall were compared with threshold levels for dryland and wetland seed germination, initiation of the growing season, patterns of gaps between early storms and the heaviness of the first falls, correlations between thresholds, spatial variation in correlation with the Southern Oscillation Index (SOI) and temporal trends in mean threshold dates. The earliest rains sufficient to cause seed germination or generate fresh fodder occur in the north-west of the Northern Territory with the average date being later to the south, east and west. Initial falls of the rainy season are heaviest, however, on Cape York Peninsula so that the time between first falls and saturation is shortest in the east. The probability of extended gaps between rainfall events increased from north to south. When the SOI is taken into account, no change in timing could be detected at the few sites with records of sufficient duration. However, because of changes in SOI frequency, rains are tending to start earlier in the drier parts of the north and north-west and later in the east. This may be because anthropogenic climate change is resulting in fewer classical El Niño Southern Oscillation events and more frequent El Niño Modoki climate anomalies.


2020 ◽  
Vol 33 (3) ◽  
pp. 907-923 ◽  
Author(s):  
Bianca Mezzina ◽  
Javier García-Serrano ◽  
Ileana Bladé ◽  
Fred Kucharski

AbstractThe winter extratropical teleconnection of El Niño–Southern Oscillation (ENSO) in the North Atlantic–European (NAE) sector remains controversial, concerning both the amplitude of its impacts and the underlying dynamics. However, a well-established response is a late-winter (January–March) signal in sea level pressure (SLP) consisting of a dipolar pattern that resembles the North Atlantic Oscillation (NAO). Clarifying the relationship between this “NAO-like” ENSO signal and the actual NAO is the focus of this study. The ENSO–NAE teleconnection and NAO signature are diagnosed by means of linear regression onto the sea surface temperature (SST) Niño-3.4 index and an EOF-based NAO index, respectively, using long-term reanalysis data (NOAA-20CR, ERA-20CR). While the similarity in SLP is evident, the analysis of anomalous upper-tropospheric geopotential height, zonal wind, and transient-eddy momentum flux, as well as precipitation and meridional eddy heat flux, suggests that there is no dynamical link between the phenomena. The observational results are further confirmed by analyzing two 10-member ensembles of atmosphere-only simulations (using an intermediate-complexity and a state-of-the-art model) with prescribed SSTs over the twentieth century. The SST-forced variability in the Northern Hemisphere is dominated by the extratropical ENSO teleconnection, which provides modest but significant SLP skill in the NAE midlatitudes. The regional internally generated variability, estimated from residuals around the ensemble mean, corresponds to the NAO pattern. It is concluded that distinct dynamics are at play in the ENSO–NAE teleconnection and NAO variability, and caution is advised when interpreting the former in terms of the latter.


2006 ◽  
Vol 19 (6) ◽  
pp. 896-915 ◽  
Author(s):  
Xiaolan L. Wang ◽  
H. Wan ◽  
Val R. Swail

Abstract This study assessed the climate and trend of cyclone activity in Canada using mainly the occurrence frequency of cyclone deepening events and deepening rates, which were derived from hourly mean sea level pressure data observed at 83 Canadian stations for up to 50 years (1953–2002). Trends in the frequency of cyclone activity were estimated by logistic regression analysis, and trends of seasonal extreme cyclone intensity, by linear regression analysis. The results of trend analysis show that, among the four seasons, winter cyclone activity has shown the most significant trends. It has become significantly more frequent, more durable, and stronger in the lower Canadian Arctic, but less frequent and weaker in the south, especially along the southeast and southwest coasts. Winter cyclone deepening rates have increased in the zone around 60°N but decreased in the Great Lakes area and southern Prairies–British Columbia. However, extreme winter cyclone activity seems to have experienced a weaker increase in northwest-central Canada but a stronger decline in the Great Lakes area and in southern Prairies. The results also show more frequent summer cyclone activity with slower deepening rates on the east coast, as well as less frequent cyclone activity with faster deepening rates in the Great Lakes area in autumn. Cyclone activity in Canada was found to be closely related to the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and El Niño–Southern Oscillation (ENSO). Overall, cyclone activity in Canada is most closely related to the NAO. The simultaneous NAO index explains about 44% (41%) of the winter (autumn) cyclone activity variance in the east coast, 31% of winter cyclone activity variance in the 60°–70°N zone, and 17% of autumn cyclone activity variance in the Great Lakes area. Also, in several regions (e.g., the east coast, the southwest, and the 60°–70°N zone) up to 15% of the seasonal cyclone activity variance can be explained by the NAO/PDO/ENSO index one–three seasons earlier, which is useful for seasonal forecasting.


2015 ◽  
Vol 28 (15) ◽  
pp. 6096-6112 ◽  
Author(s):  
Kimberly Smith ◽  
Courtenay Strong ◽  
Shih-Yu Wang

Abstract The eastern Great Basin (GB) in the western United States is strongly affected by droughts that influence water management decisions. Precipitation that falls in the GB, particularly in the Great Salt Lake (GSL) basin encompassed by the GB, provides water for millions of people living along the Wasatch Front Range. Western U.S. precipitation is known to be influenced by El Niño–Southern Oscillation (ENSO) as well as the Pacific decadal oscillation (PDO) in the North Pacific. Historical connectivity between GB precipitation and Pacific Ocean sea surface temperatures (SSTs) on interannual to multidecadal time scales is evaluated for 20 models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). While the majority of the models had realistic ENSO and PDO spatial patterns in the SSTs, the simulated influence of these two modes on GB precipitation tended to be too strong for ENSO and too weak for PDO. Few models captured the connectivity at a quasi-decadal period influenced by the transition phase of the Pacific quasi-decadal oscillation (QDO; a recently identified climate mode that influences GB precipitation). Some of the discrepancies appear to stem from models not capturing the observed tendency for the PDO to modulate the sign of the ENSO–GB precipitation teleconnection. Of all of the models, CCSM4 most consistently captured observed connections between Pacific SST variability and GB precipitation on the examined time scales.


2006 ◽  
Vol 19 (6) ◽  
pp. 979-997 ◽  
Author(s):  
Ryan L. Fogt ◽  
David H. Bromwich

Abstract Decadal variability of the El Niño–Southern Oscillation (ENSO) teleconnection to the high-latitude South Pacific is examined by correlating the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr Re-Analysis (ERA-40) and observations with the Southern Oscillation index (SOI) over the last two decades. There is a distinct annual contrast between the 1980s and the 1990s, with the strong teleconnection in the 1990s being explained by an enhanced response during austral spring. Geopotential height anomaly composites constructed during the peak ENSO seasons also demonstrate the decadal variability. Empirical orthogonal function (EOF) analysis reveals that the 1980s September–November (SON) teleconnection is weak due to the interference between the Pacific–South American (PSA) pattern associated with ENSO and the Southern Annular Mode (SAM). An in-phase relationship between these two modes during SON in the 1990s amplifies the height and pressure anomalies in the South Pacific, producing the strong teleconnections seen in the correlation and composite analyses. The in-phase relationship between the tropical and high-latitude forcing also exists in December–February (DJF) during the 1980s and 1990s. These results suggest that natural climate variability plays an important role in the variability of SAM, in agreement with a growing body of literature. Additionally, the significantly positive correlation between ENSO and SAM only during times of strong teleconnection suggests that both the Tropics and the high latitudes need to work together in order for ENSO to strongly influence Antarctic climate.


Sign in / Sign up

Export Citation Format

Share Document