scholarly journals Sensitivity of GPS tropospheric estimates to mesoscale convective systems in West Africa

2019 ◽  
Vol 19 (14) ◽  
pp. 9541-9561 ◽  
Author(s):  
Samuel Nahmani ◽  
Olivier Bock ◽  
Françoise Guichard

Abstract. This study analyzes the characteristics of GPS tropospheric estimates (zenith wet delays – ZWDs, gradients, and post-fit phase residuals) during the passage of mesoscale convective systems (MCSs) and evaluates their sensitivity to the research-level GPS data processing strategy implemented. Here, we focus on MCS events observed during the monsoon season of West Africa. This region is particularly well suited for the study of these events due to the high frequency of MCS occurrences in the contrasting climatic environments between the Guinean coast and the Sahel. This contrast is well sampled with data generated by six African Monsoon Multidisciplinary Analysis (AMMA) GPS stations. Tropospheric estimates for a 3-year period (2006–2008), processed with both the GAMIT and GIPSY-OASIS software packages, were analyzed and intercompared. First, the case of a MCS that passed over Niamey, Niger, on 11 August 2006 demonstrates a strong impact of the MCS on GPS estimates and post-fit residuals when the GPS signals propagate through the convective cells as detected on reflectivity maps from the MIT C-band Doppler radar. The estimates are also capable of detecting changes in the structure and dynamics of the MCS. However, the sensitivity is different depending on the tropospheric modeling approach adopted in the software. With GIPSY-OASIS, the high temporal sampling (5 min) of ZWDs and gradients is well suited for detecting the small-scale, short-lived, convective cells, while the post-fit residuals remain quite small. With GAMIT, the lower temporal sampling of the estimated parameters (hourly for ZWDs and daily for gradients) is not sufficient to capture the rapid delay variations associated with the passage of the MCS, but the post-fit phase residuals clearly reflect the presence of a strong refractivity anomaly. The results are generalized with a composite analysis of 414 MCS events observed over the 3-year period at the six GPS stations with the GIPSY-OASIS estimates. A systematic peak is found in the ZWDs coincident with the cold pool crossing time associated with the MCSs. The tropospheric gradients reflect the path of the MCS propagation (generally from east to west). This study concludes that ZWDs, gradients, and post-fit phase residuals provide relevant and complementary information on MCSs passing over or in the vicinity of a GPS station.

2019 ◽  
Author(s):  
Samuel Nahmani ◽  
Olivier Bock ◽  
Françoise Guichard

Abstract. This study analyzes the characteristics of GPS tropospheric estimates (Zenith Wet Delays, and gradients, and post-fit phase residuals) during the passage of Mesoscale Convective Systems (MCSs) and evaluates their sensitivity to the research-level GPS data processing strategy implemented. Here, we focus on MCS events observed during the monsoon seasons of West Africa. This region is particularly well suited because of the high frequency of occurrence of MCSs in contrasting climatic environments between the Guinean coast and the Sahel. This contrast is well sampled data with the six AMMA GPS stations. Tropospheric estimates for 3-year period (2006–2008), processed with both GAMIT and GIPSY-OASIS software packages, were analyzed and inter-compared. First, the case an MCS which passed over Niamey, Niger, on 11 August 2006, demonstrates a strong impact of the MCS on GPS estimates and post-fit residuals when the GPS signals propagate through convective cells as detected on reflectivity maps from MIT’s C-band Doppler radar. The estimates are also capable of detecting changes in the structure and dynamics of the MCS. The sensitivity is however different depending on the tropospheric modeling approach adopted in the software. With GIPSY-OASIS, the high temporal sampling (5 min) of Zenith Wet Delays and gradients is well suited for detecting the small-scale, short-lived, convective cells, while the post-fit residuals remain quite small. With GAMIT, the lower temporal sampling of the estimated parameters (hourly for Zenith Wet Delays and daily for gradients) is not sufficient to capture the rapid delay variations associated with the passage of the MCS, but the post-fit phase residuals clearly reflect the presence of a strong refractivity anomaly. The results are generalized with a composite analysis of 414 MCS events observed over the 3-year period at the six GPS stations with the GIPSY-OASIS estimates. A systematic peak is found in the Zenith Wet Delays coincident with the cold-pool crossing time associated to the MCSs. The tropospheric gradients are reflecting the path of the MCS propagation (generally from East to West). This study concludes that Zenith Wet Delays, gradients, and post-fit phase residuals provide relevant and complementary information on MCSs passing over or in the vicinity of a GPS station.


2020 ◽  
Author(s):  
Giuseppe Torri ◽  
Zhiming Kuang

<p>Collisions represent one of the most important processes through which cold pools—essential boundary layer features of precipitating systems—help to organize convection. For example, by colliding with one another, expanding cold pools can trigger new convective cells, a process that has been argued to be important to explain the deepening of convection and the maintenance of mesoscale convective systems for many hours. In spite of their role, collisions are an understudied process, and many aspects remain to be fully clarified. In order to quantify the importance of collisions on the life cycle of cold pools, we will present some results based on a combination of numerical simulations in radiative-convective equilibrium and a Lagrangian cold pool tracking algorithm. First, we will discuss how the Lagrangian algorithm can be used to estimate that the median time of the first collision for the simulated cold pools is under 10 minutes. We will then show that cold pools are significantly deformed by collisions and lose their circular shape already at the very early stages of their life cycle. Finally, we will present results suggesting that cold pools appear to be clustered, and we will provide some estimates of the associated temporal and spatial scales.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 946
Author(s):  
Lei Yin ◽  
Jiahua Mao ◽  
Fan Ping ◽  
Xiaofan Li ◽  
Ning Wang

A torrential rainfall that occurred in Beijing during the period of 21–22 July 2012 is simulated by the Weather Research and Forecasting Model in order to investigate the probable mechanisms for the initiation and organization of warm-sector mesoscale convective systems (MCSs). The simulated results show that the cyclone, which formed in Hetao area, Inner Mongolia and moved eastward slowly, played a key role in the formation and development of warm-sector precipitation, although the favorable atmospheric environment and the configuration of weather systems are also important, which caused the trigger and organization of convective cells along Taihang Mountains. It is the interaction of the local terrain convergence line and the southerly airflows of Hetao cyclone that cause the continuous trigger of convective cells along Taihang Mountains. While, the triggers of convective cells in the plains are caused by the gravity waves, which is related to the development and eastward movement of Hetao cyclone. It must be pointed out that the merging and coupling between the cells that triggered in Taihang Mountains and moved southwesterly and the cells that triggered in plains and moved northeasterly are the key factors for the formation and development of MCSs during the warm-sector precipitation. In addition, the back-building processes and the cold pool forcing are also important for the formation and development of MCSs in this study.


2012 ◽  
Vol 93 (11) ◽  
pp. 1713-1724 ◽  
Author(s):  
Kristen L. Rasmussen ◽  
Robert A. Houze

Flash floods on the edge of high terrain, such as the Himalayas or Rocky Mountains, are especially dangerous and hard to predict. The Leh flood of 2010 at the edge of the Himalayan Plateau in India is an example of the tragic consequences of such storms. The flood occurred over a high mountain river valley when, on three successive days, diurnally generated convective cells over the Tibetan Plateau gathered into mesoscale convective systems and moved off the edge of the Plateau over Leh. An easterly midlevel jet associated with a midlevel monsoon vortex over northern India and a high over Asia helped the convection organize into propagating mesoscale systems that moved over the edge of the Plateau. On the third day the mesoscale system moving off the plateau was greatly invigorated when it suddenly drew on moisture flowing upslope over the terrain. It gained maximum strength from this intake of moisture near Leh, and the heavy rains washed over the surrounding mountains and down and over the town.


2017 ◽  
Vol 74 (12) ◽  
pp. 4213-4228 ◽  
Author(s):  
Changhai Liu ◽  
Mitchell W. Moncrieff

Abstract Numerical simulations are performed to investigate organized convection observed in the Asian summer monsoon and documented as a category of mesoscale convective systems (MCSs) over the U.S. continent during the warm season. In an idealized low-inhibition and unidirectional shear environment of the mei-yu moisture front, the structure of the simulated organized convection is distinct from that occurring in the classical quasi-two-dimensional, shear-perpendicular, and trailing stratiform (TS) MCS. Consisting of four airflow branches, a three-dimensional, eastward-propagating, downshear-tilted, shear-parallel MCS builds upshear by initiating new convection at its upstream end. The weak cold pool in the low-inhibition environment negligibly affects convection initiation, whereas convectively generated gravity waves are vital. Upstream-propagating gravity waves form a saturated or near-saturated moist tongue, and downstream-propagating waves control the initiation and growth of convection within a preexisting cloud layer. A sensitivity experiment wherein the weak cold pool is removed entirely intensifies the MCS and its interaction with the environment. The horizontal scale, rainfall rate, convective momentum transport, and transverse circulation are about double the respective value in the control simulation. The positive sign of the convective momentum transport contrasts with the negative sign for an eastward-propagating TS MCS. The structure of the simulated convective systems resembles shear-parallel organization in the intertropical convergence zone (ITCZ).


2017 ◽  
Vol 145 (6) ◽  
pp. 2177-2200 ◽  
Author(s):  
Russ S. Schumacher ◽  
John M. Peters

Abstract This study investigates the influences of low-level atmospheric water vapor on the precipitation produced by simulated warm-season midlatitude mesoscale convective systems (MCSs). In a series of semi-idealized numerical model experiments using initial conditions gleaned from composite environments from observed cases, small increases in moisture were applied to the model initial conditions over a layer either 600 m or 1 km deep. The precipitation produced by the MCS increased with larger moisture perturbations as expected, but the rainfall changes were disproportionate to the magnitude of the moisture perturbations. The experiment with the largest perturbation had a water vapor mixing ratio increase of approximately 2 g kg−1 over the lowest 1 km, corresponding to a 3.4% increase in vertically integrated water vapor, and the area-integrated MCS precipitation in this experiment increased by nearly 60% over the control. The locations of the heaviest rainfall also changed in response to differences in the strength and depth of the convectively generated cold pool. The MCSs in environments with larger initial moisture perturbations developed stronger cold pools, and the convection remained close to the outflow boundary, whereas the convective line was displaced farther behind the outflow boundary in the control and the simulations with smaller moisture perturbations. The high sensitivity of both the amount and location of MCS rainfall to small changes in low-level moisture demonstrates how small moisture errors in numerical weather prediction models may lead to large errors in their forecasts of MCS placement and behavior.


2021 ◽  
Author(s):  
Marlon Maranan ◽  
Andreas Schlueter ◽  
Andreas H. Fink ◽  
Peter Knippertz

<p>Rainfall variability over West Africa remains a major challenge for numerical weather prediction (NWP). Due to the largely stochastic and sub-grid nature of tropical convection, current NWP models still fail to provide reliable precipitation forecasts – even for a 1-day leadtime – and are barely more skillful than climatology-based forecasts. Thus, several recent studies have investigated the presumably more predictable influence of tropical waves on environmental conditions for convection and found distinct and coherent (thermo-)dynamical patterns depending on the type and phase of the wave. Of particular interest in this context is the interaction of the wave with the lifecycle of usually westward propagating mesoscale convective systems (MCSs), which are the major providers of rain in the region and can occasionally even lead to flooding. The exact mechanisms and strength of this interaction are still not entirely known.</p><p>This study combines two recent datasets in a novel way in order to systematically investigate the influence of tropical waves on MCS characteristics and lifecycle. First, MCSs are tracked within northern tropical Africa (20°W-30°E / 2°-15°N) over an 11-year period during the West African rainy season (April-October) using infrared brightness temperature fields provided by the Spinning enhanced visible and infrared imager (SEVIRI). Second, tropical waves are isolated by applying a filtering method in the wave-frequency domain to precipitation data of the Tropical Rainfall Measuring Mission (TRMM) within the 5°-15°N latitude band for the same target period. By combining the two datasets in space and time, the magnitude and phase of each wave is known at every timestep of the MCS tracks, which enables a systematic investigation of MCS characteristics as a function of wave properties.</p><p>Preliminary results suggest that long-lived MCSs (lifetime ≥ 12h) frequently couple with the “wet” phase of high-frequency tropical waves, in particular Kelvin, eastward inertia-gravity (EIG), and African easterly waves (AEW). Showing an enhanced occurrence frequency of MCS initiation, the wet phase of AEWs appears to have strong modulation capabilities during the genesis stage and further accompanies these long-lived MCSs during their entire lifetime. In the case of Kelvin waves and EIGs, the wet phase overlaps only with the intensification and maturity stage of these MCSs as a consequence of opposite directions of movement. Similar coupling patterns also exist for mixed Rossby gravity waves (MRGs), although to a weaker extent. Furthermore, no consistent coupling tendencies with long-lived MCSs are evident for low-frequency waves (Madden-Julian Oscillation (MJO), equatorial Rossby wave (ER)), arguably since they act on larger spatio-temporal scales. For short-lived MCSs (lifetime < 6h), the coupling with high-frequency waves is substantially weaker.</p><p>In the future we will also address potential influences of wave-wave interactions on MCSs as well as potential differences in coupling mechanisms between the Guinea Coast region and the Sahel farther north. With increasing efforts in the prediction of tropical waves, this study has the potential to aid the short-term forecasting of MCS development and its lifecycle. This can be of particular importance for the anticipation of extreme rainfall events and subsequent risk assessment in West Africa.</p>


2021 ◽  
Vol 34 (1) ◽  
pp. 71-87
Author(s):  
Cornelia Klein ◽  
Francis Nkrumah ◽  
Christopher M. Taylor ◽  
Elijah A. Adefisan

AbstractMesoscale convective systems (MCSs) are the major source of extreme rainfall over land in the tropics and are expected to intensify with global warming. In the Sahel, changes in surface temperature gradients and associated changes in wind shear have been found to be important for MCS intensification in recent decades. Here we extend that analysis to southern West Africa (SWA) by combining 34 years of cloud-top temperatures with rainfall and reanalysis data. We identify clear trends in intense MCSs since 1983 and their associated atmospheric drivers. We also find a marked annual cycle in the drivers, linked to changes in the convective regime during the progression of the West African monsoon. Before the peak of the first rainy season, we identify a shear regime where increased temperature gradients play a crucial role for MCS intensity trends. From June onward, SWA moves into a less unstable, moist regime during which MCS trends are mainly linked to frequency increase and may be more influenced by total column water vapor. However, during both seasons we find that MCSs with the most intense convection occur in an environment with stronger wind shear, increased low-level humidity, and drier midlevels. Comparing the sensitivity of MCS intensity and peak rainfall to low-level moisture and wind shear conditions preceding events, we find a dominant role for wind shear. We conclude that MCS trends are directly linked to a strengthening of two distinct convective regimes that cause the seasonal change of SWA MCS characteristics. However, the convective environment that ultimately produces the most intense MCSs remains the same.


2012 ◽  
Vol 30 (8) ◽  
pp. 1235-1248 ◽  
Author(s):  
J.-H. Jeong ◽  
D.-I. Lee ◽  
C.-C. Wang ◽  
S.-M. Jang ◽  
C.-H. You ◽  
...  

Abstract. To understand the different environment and morphology for heavy rainfall during 9–10 July 2007, over the Korean Peninsula, mesoscale convective systems (MCSs) that accompanied the Changma front in two different regions were investigated. The sub-synoptic conditions were analysed using mesoscale analysis data (MANAL), reanalysis data, weather charts and Multi-functional Transport Satellite (MTSAT-IR) data. Dual-Doppler radar observations were used to analyse the wind fields within the precipitation systems. During both the case periods, the surface low-pressure field intensified and moved northeastward along the Changma front. A low-level warm front gradually formed with an east-west orientation, and the cold front near the low pressure was aligned from northeast to southwest. The northern convective systems (meso-α-scale) were embedded within an area of stratiform cloud north of the warm front. The development of low-level pressure resulted in horizontal and vertical wind shear due to cyclonic circulation. The wind direction was apparently different across the warm front. In addition, the southeasterly flow (below 4 km) played an important role in generating new convective cells behind the prevailing convective cell. Each isolated southern convective cell (meso-β-scale) moved along the line ahead of the cold front within the prefrontal warm sector. These convective cells developed when a strong southwesterly low-level jet (LLJ) intensified and moisture was deeply advected into the sloping frontal zone. A high equivalent potential temperature region transported warm moist air in a strong southwesterly flow, where the convectively unstable air led to updraft and downdraft with a strong reflectivity core.


Sign in / Sign up

Export Citation Format

Share Document