scholarly journals Source apportionment of PM<sub>2.5</sub> in Shanghai based on hourly organic molecular markers and other source tracers

2020 ◽  
Vol 20 (20) ◽  
pp. 12047-12061
Author(s):  
Rui Li ◽  
Qiongqiong Wang ◽  
Xiao He ◽  
Shuhui Zhu ◽  
Kun Zhang ◽  
...  

Abstract. Identification of various emission sources and quantification of their contributions comprise an essential step in formulating scientifically sound pollution control strategies. Most previous studies have been based on traditional offline filter analysis of aerosol major components (usually inorganic ions, elemental carbon – EC, organic carbon – OC, and elements). In this study, source apportionment of PM2.5 using a positive matrix factorization (PMF) model was conducted for urban Shanghai in the Yangtze River Delta region, China, utilizing a large suite of molecular and elemental tracers, together with water-soluble inorganic ions, OC, and EC from measurements conducted at two sites from 9 November to 3 December 2018. The PMF analysis with inclusion of molecular makers (i.e., MM-PMF) identified 11 pollution sources, including 3 secondary-source factors (i.e., secondary sulfate; secondary nitrate; and secondary organic aerosol, SOA, factors) and 8 primary sources (i.e., vehicle exhaust, industrial emission and tire wear, industrial emission II, residual oil combustion, dust, coal combustion, biomass burning, and cooking). The secondary sources contributed 62.5 % of the campaign-average PM2.5 mass, with the secondary nitrate factor being the leading contributor. Cooking was a minor contributor (2.8 %) to PM2.5 mass while a significant contributor (11.4 %) to the OC mass. Traditional PMF analysis relying on major components alone (PMFt) was unable to resolve three organics-dominated sources (i.e., biomass burning, cooking, and SOA source factors). Utilizing organic tracers, the MM-PMF analysis determined that these three sources combined accounted for 24.4 % of the total PM2.5 mass. In PMFt, this significant portion of PM mass was apportioned to other sources and thereby was notably biasing the source apportionment outcome. Backward trajectory and episodic analysis were performed on the MM-PMF-resolved source factors to examine the variations in source origins and composition. It was shown that under all episodes, secondary nitrate and the SOA factor were two major source contributors to the PM2.5 pollution. Our work has demonstrated that comprehensive hourly data of molecular markers and other source tracers, coupled with MM-PMF, enables examination of detailed pollution source characteristics, especially organics-dominated sources, at a timescale suitable for monitoring episodic evolution and with finer source breakdown.

Author(s):  
Xiaoyao Ma ◽  
Zhenghui Xiao ◽  
Lizhi He ◽  
Zongbo Shi ◽  
Yunjiang Cao ◽  
...  

Xiangtan, South China, is characterized by year-round high relative humidity and very low wind speeds. To assess levels of PM2.5, daily samples were collected from 2016 to 2017 at two urban sites. The mass concentrations of PM2.5 were in the range of 30–217 µg/m3, with the highest concentrations in winter and the lowest in spring. Major water-soluble ions (WSIIs) and total carbon (TC) accounted for 58–59% and 21–24% of the PM2.5 mass, respectively. Secondary inorganic ions (SO42−, NO3−, and NH4+) dominated the WSIIs and accounted for 73% and 74% at the two sites. The concentrations of K, Fe, Al, Sb, Ca, Zn, Mg, Pb, Ba, As, and Mn in the PM2.5 at the two sites were higher than 40 ng/m3, and decreased in the order of winter > autumn > spring. Enrichment factor analysis indicates that Co, Cu, Zn, As, Se, Cd, Sb, Tl, and Pb mainly originates from anthropogenic sources. Source apportionment analysis showed that secondary inorganic aerosols, vehicle exhaust, coal combustion and secondary aerosols, fugitive dust, industrial emissions, steel industry are the major sources of PM2.5, contributing 25–27%, 21–22%, 19–21%, 16–18%, 6–9%, and 8–9% to PM2.5 mass.


2014 ◽  
Vol 14 (23) ◽  
pp. 12915-12930 ◽  
Author(s):  
V. Verma ◽  
T. Fang ◽  
H. Guo ◽  
L. King ◽  
J. T. Bates ◽  
...  

Abstract. We assess the potential of the water-soluble fraction of atmospheric fine aerosols in the southeastern United States to generate reactive oxygen species (ROS) and identify major ROS-associated emission sources. ROS-generation potential of particles was quantified by the dithiothreitol (DTT) assay and involved analysis of fine particulate matter (PM) extracted from high-volume quartz filters (23 h integrated samples) collected at various sites in different environmental settings in the southeast, including three urban-Atlanta sites, in addition to a rural site. Paired sampling was conducted with one fixed site in Atlanta (Jefferson Street), representative of the urban environment, with the others rotating among different sites, for ~250 days between June 2012 and September 2013 (N=483). A simple linear regression between the DTT activity and aerosol chemical components revealed strong associations between PM ROS-generation potential and secondary organic aerosol (WSOC – water-soluble organic carbon) in summer, and biomass burning markers in winter. Redox-active metals were also somewhat correlated with the DTT activity, but mostly at urban and roadside sites. Positive matrix factorization (PMF) was applied to apportion the relative contribution of various sources to the ROS-generation potential of water-soluble PM2.5 in urban Atlanta. PMF showed that vehicular emissions contribute uniformly throughout the year (12–25%), while secondary oxidation processes dominated the DTT activity in summer (46%) and biomass burning in winter (47%). Road dust was significant only during drier periods (~12% in summer and fall). Source apportionment by chemical mass balance (CMB) was reasonably consistent with PMF, but with higher contribution from vehicular emissions (32%). Given the spatially large data set of PM sampled over an extended period, the study reconciles the results from previous work that showed only region- or season-specific aerosol components or sources contributing to PM ROS activity, possibly due to smaller sample sizes. The ubiquitous nature of the major sources of PM-associated ROS suggests widespread population exposures to aerosol components that have the ability to catalyze the production of oxidants in vivo.


2012 ◽  
Vol 12 (11) ◽  
pp. 28661-28703 ◽  
Author(s):  
S. L. Mkoma ◽  
K. Kawamura ◽  
P. Fu

Abstract. Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania in 2011 during wet and dry seasons and they were analysed for carbonaceous components, levoglucosan and water-soluble inorganic ions. The mean mass concentrations of PM2.5 and PM10 were 28.2&amp;pm;6.4 μg m−3 and 47&amp;pm;8.2 μg m−3 in wet season, and 39.1&amp;pm;9.8 μg m−3 and 61.4&amp;pm;19.2 μg m−3 in dry season, respectively. Total carbon (TC) accounted for 16–19% of the PM2.5 mass and 13–15% of the PM10 mass. On average, 85.9 to 88.7% of TC in PM2.5 and 87.2 to 90.1% in PM10 was organic carbon (OC), of which 67–72% and 63% was found to be water-soluble organic carbon (WSOC) in PM2.5 and PM10, respectively. Water-soluble potassium (K+) and sulphate (SO42−) in PM2.5 and, sodium (Na+) and SO42− in PM10 were the dominant ionic species. We found, that concentrations of biomass burning tracers (levoglucosan and mannosan) well correlated with non-sea-salt-K+, WSOC and OC in the aerosols from Tanzania, East Africa. Mean contributions of levoglucosan to OC ranged between 3.9–4.2% for PM2.5 and 3.5–3.8% for PM10. This study demonstrates that emissions from biomass- and biofuel-burning activities followed by atmospheric photochemical processes mainly control the air quality in Tanzania.


2021 ◽  
Vol 21 (10) ◽  
pp. 8273-8292
Author(s):  
Siqi Hou ◽  
Di Liu ◽  
Jingsha Xu ◽  
Tuan V. Vu ◽  
Xuefang Wu ◽  
...  

Abstract. Carbonaceous aerosol is a dominant component of fine particles in Beijing. However, it is challenging to apportion its sources. Here, we applied a newly developed method which combined radiocarbon (14C) with organic tracers to apportion the sources of fine carbonaceous particles at an urban (IAP) and a rural (PG) site of Beijing. PM2.5 filter samples (24 h) were collected at both sites from 10 November to 11 December 2016 and from 22 May to 24 June 2017. 14C was determined in 25 aerosol samples (13 at IAP and 12 at PG) representing low pollution to haze conditions. Biomass burning tracers (levoglucosan, mannosan, and galactosan) in the samples were also determined using gas chromatography–mass spectrometry (GC-MS). Higher contributions of fossil-derived OC (OCf) were found at the urban site. The OCf / OC ratio decreased in the summer samples (IAP: 67.8 ± 4.0 % in winter and 54.2 ± 11.7 % in summer; PG: 59.3 ± 5.7 % in winter and 50.0 ± 9.0 % in summer) due to less consumption of coal in the warm season. A novel extended Gelencsér (EG) method incorporating the 14C and organic tracer data was developed to estimate the fossil and non-fossil sources of primary and secondary OC (POC and SOC). It showed that fossil-derived POC was the largest contributor to OC (35.8 ± 10.5 % and 34.1 ± 8.7 % in wintertime for IAP and PG, 28.9 ± 7.4 % and 29.1 ± 9.4 % in summer), regardless of season. SOC contributed 50.0 ± 12.3 % and 47.2 ± 15.5 % at IAP and 42.0 ± 11.7 % and 43.0 ± 13.4 % at PG in the winter and summer sampling periods, respectively, within which the fossil-derived SOC was predominant and contributed more in winter. The non-fossil fractions of SOC increased in summer due to a larger biogenic component. Concentrations of biomass burning OC (OCbb) are resolved by the extended Gelencsér method, with average contributions (to total OC) of 10.6 ± 1.7 % and 10.4 ± 1.5 % in winter at IAP and PG and 6.5 ± 5.2 % and 17.9 ± 3.5 % in summer, respectively. Correlations of water-insoluble OC (WINSOC) and water-soluble OC (WSOC) with POC and SOC showed that although WINSOC was the major contributor to POC, a non-negligible fraction of WINSOC was found in SOC for both fossil and non-fossil sources, especially during winter. In summer, a greater proportion of WSOC from non-fossil sources was found in SOC. Comparisons of the source apportionment results with those obtained from a chemical mass balance model were generally good, except for the cooking aerosol.


2021 ◽  
Vol 21 (9) ◽  
pp. 7321-7341
Author(s):  
Jingsha Xu ◽  
Di Liu ◽  
Xuefang Wu ◽  
Tuan V. Vu ◽  
Yanli Zhang ◽  
...  

Abstract. Fine particles were sampled from 9 November to 11 December 2016 and 22 May to 24 June 2017 as part of the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-China) field campaigns in urban Beijing, China. Inorganic ions, trace elements, organic carbon (OC), elemental carbon (EC), and organic compounds, including biomarkers, hopanes, polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and fatty acids, were determined for source apportionment in this study. Carbonaceous components contributed on average 47.2 % and 35.2 % of total reconstructed PM2.5 during the winter and summer campaigns, respectively. Secondary inorganic ions (sulfate, nitrate, ammonium; SNA) accounted for 35.0 % and 45.2 % of total PM2.5 in winter and summer. Other components including inorganic ions (K+, Na+, Cl−), geological minerals, and trace metals only contributed 13.2 % and 12.4 % of PM2.5 during the winter and summer campaigns. Fine OC was explained by seven primary sources (industrial and residential coal burning, biomass burning, gasoline and diesel vehicles, cooking, and vegetative detritus) based on a chemical mass balance (CMB) receptor model. It explained an average of 75.7 % and 56.1 % of fine OC in winter and summer, respectively. Other (unexplained) OC was compared with the secondary OC (SOC) estimated by the EC-tracer method, with correlation coefficients (R2) of 0.58 and 0.73 and slopes of 1.16 and 0.80 in winter and summer, respectively. This suggests that the unexplained OC by the CMB model was mostly associated with SOC. PM2.5 apportioned by the CMB model showed that the SNA and secondary organic matter were the two highest contributors to PM2.5. After these, coal combustion and biomass burning were also significant sources of PM2.5 in winter. The CMB results were also compared with results from the positive matrix factorization (PMF) analysis of co-located aerosol mass spectrometer (AMS) data. The CMB model was found to resolve more primary organic aerosol (OA) sources than AMS-PMF, but the latter could apportion secondary OA sources. The AMS-PMF results for major components, such as coal combustion OC and oxidized OC, correlated well with the results from the CMB model. However, discrepancies and poor agreements were found for other OC sources, such as biomass burning and cooking, some of which were not identified in AMS-PMF factors.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 574
Author(s):  
Yue Liu ◽  
Haiwei Li ◽  
Shijie Cui ◽  
Dongyang Nie ◽  
Yanfang Chen ◽  
...  

Water-soluble organic nitrogen (WSON) is an important component of PM2.5 which may affect air quality, climate and human health. Herein, one-year field samples of atmospheric PM2.5 (June 2017–May 2018) were collected in northern Nanjing. Chemical characterization of PM2.5 major components as well as WSON were conducted, and WSON composition and sources were further investigated via measurements by a Aerodyne soot particle aerosol mass spectrometer (SP-AMS) as well as positive matrix factorization (PMF). Inorganic ions, mainly consisting of ammonium, sulfate, and nitrate, were found to dominate PM2.5 mass (58.7%), followed by organic matter (OM) (22.6%), and elemental carbon (EC) (2.1%). Water-soluble OM dominated OM (65.1%), and its temporal variation was closely correlated with that of secondary organic matter, while time series of water-insoluble OM concentrations correlated tightly with that of primary organic matter. Average WSON concentration was 2.15 μg/m3, which was highest in winter and lowest in summer. Correlation analysis of WSON with PM2.5 components also indicated that WSON was mainly from secondary sources. SP-AMS revealed that WSON mass spectrum was composed of CxHyNp+ (91.2%) and CxHyOzNp+ (8.8%), indicating dominance of amines and other oxygenated ON compounds. PMF analysis resolved two primary sources (traffic, biomass burning) and two secondary sources (less-oxidized and more-oxidized factors) of WSOM and WSON, and the secondary source dominated both WSOM and WSON. Contribution of the more-oxidized ON factor was very high in winter, and the less-oxidized factor was significant in summer, indicating a likely important role of aqueous-phase processing in winter as well as photochemical oxidation in summer to WSON.


2014 ◽  
Vol 14 (10) ◽  
pp. 15591-15643 ◽  
Author(s):  
P. Zotter ◽  
V. G. Ciobanu ◽  
Y. L. Zhang ◽  
I. El-Haddad ◽  
M. Macchia ◽  
...  

Abstract. While several studies have investigated winter-time air pollution with a wide range of concentration levels, hardly any results are available for longer time periods covering several winter-smog episodes at various locations; e.g. often only a few weeks from a single winter are investigated. Here, we present source apportionment results of winter-smog episodes from 16 air pollution monitoring stations across Switzerland from five consecutive winters. Radiocarbon (14C) analyses of the elemental (EC) and organic (OC) carbon fractions, as well as levoglucosan, major water-soluble ionic species and gas-phase pollutant measurements were used to characterize the different sources of PM10. The most important contributions to PM10 during winter-smog episodes in Switzerland were on average the secondary inorganic constituents (sum of nitrate, sulfate and ammonium = 41 ± 15%) followed by organic matter OM (30 ± 12%) and EC (5 ± 2%). The non-fossil fractions of OC (fNF,OC) ranged on average from 69–85% and 80–95 % for stations north and south of the Alps, respectively, showing that traffic contributes on average only up to ~30% to OC. The non-fossil fraction of EC (fNF,EC), entirely attributable to primary biomass burning, was on average 42 ± 13% and 49 ± 15% for north and south of the Alps, respectively. While a high correlation was observed between fossil EC and nitrogen oxides, both primarily emitted by traffic, these species did not significantly correlate with fossil OC (OCF), which seems to suggest that a considerable amount of OCF is secondary, formed from fossil precursors. Elevated fNF,EC and fNF,OC values and the high correlation of the latter with other wood burning markers, including levoglucosan and water soluble potassium (K+) indicate that biomass burning is the major source of carbonaceous aerosols during winter-smog episodes in Switzerland. The inspection of the non-fossil OC and EC levels and the relation with levoglucosan and water-soluble K+ shows different ratios for stations north and south of the Alps, most likely because of differences in burning technologies, for these two regions in Switzerland.


Sign in / Sign up

Export Citation Format

Share Document