scholarly journals Contribution of Surface Solar Radiation and Precipitation to Spatiotemporal Patterns of Surface and Air Temperature Warming in China from 1960 to 2003

2016 ◽  
Author(s):  
Jizheng Du ◽  
Kaicun Wang ◽  
Jiankai Wang ◽  
Qian Ma

Abstract. Although the global warming has been successfully attributed to the elevated atmospheric greenhouses gases, the reasons for spatiotemporal patterns the warming rates are still under debate. In this paper, we report surface and air warming based on observations collected at 1977 stations in China from 1960 to 2003. Our results show that the warming of daily maximum surface (Ts-max) and air (Ta-max) temperatures showed a significant spatial pattern, stronger in the northwest China and weaker in South China and the North China Plain. These warming spatial patterns are attributed to surface shortwave solar radiation (SSR) and precipitation, the key parameters of surface energy budget. During the study period, SSR decreased by −1.50 W m−2 10 yr−1 in China and caused the trends of Ts-max and Ta-max decreased by 0.139 and 0.053 °C 10 yr−1, respectively. More importantly, South China and the North China Plain had an extremely higher dimming rates than other regions. The spatial contrasts of trends of Ts-max and Ta-max in China are significantly reduced after adjusting for the impact of SSR and precipitation. For example, the difference in warming rates between North China Plain and Loess Plateau reduce by 97.8 % and 68.3 % for Ts-max and Ta-max respectively. After adjusting for the impact of SSR and precipitation, the seasonal contrast of Ts-max and Ta-max decreased by 45.0 % and 17.2 %, and the daily contrast of warming rates of surface and air temperature decreased by 33.0 % and 29.1 % over China. This study shows an essential role of land energy budget in determining regional warming.

2017 ◽  
Vol 17 (8) ◽  
pp. 4931-4944 ◽  
Author(s):  
Jizeng Du ◽  
Kaicun Wang ◽  
Jiankai Wang ◽  
Qian Ma

Abstract. Although global warming has been attributed to increases in atmospheric greenhouses gases, the mechanisms underlying spatiotemporal patterns of warming trends remain under debate. Herein, we analyzed surface and air warming observations recorded at 1977 stations in China from 1960 to 2003. Our results showed a significant spatial pattern for the warming of the daily maximum surface (Ts-max) and air (Ta-max) temperatures, and the pattern was stronger in northwest and northeast China and weaker or negative in South China and the North China Plain. These warming spatial patterns were attributed to surface shortwave solar radiation (Rs) and precipitation (P), which play a key role in the surface energy budget. During the study period, Rs decreased by −1.50 ± 0.42 W m−2 10 yr−1 in China, which reduced the trends of Ts-max and Ta-max by about 0.139 and 0.053 °C 10 yr−1, respectively. More importantly, the decreasing rates in South China and the North China Plain were stronger than those in other parts of China. The spatial contrasts in the trends of Ts-max and Ta-max in China were significantly reduced after adjusting for the effect of Rs and P. For example, after adjusting for the effect of Rs and P, the difference in the Ts-max and Ta-max values between the North China Plain and the Loess Plateau was reduced by 97.8 and 68.3 %, respectively; the seasonal contrast in Ts-max and Ta-max decreased by 45.0 and 17.2 %, respectively; and the daily contrast in the warming rates of the surface and air temperature decreased by 33.0 and 29.1 %, respectively. This study shows that the land energy budget plays an essential role in the identification of regional warming patterns.


2016 ◽  
Author(s):  
X. Long ◽  
X. X. Tie ◽  
J. J. Cao ◽  
R. J. Huang ◽  
T. Feng ◽  
...  

Abstract. Crop field burning (CFB) has important effects on air pollution in China, but it is seldom quantified and reported in a regional scale, which is of great importance for the control strategies of CFB in China, especially in the North China Plain (NCP). With the provincial statistical data and open crop fires captured by satellite (MODIS), we extracted a detailed emission inventory of CFB during a heavy haze event from 6th to 12th October 2014. A regional dynamical and chemical model (WRF-Chem) was applied to investigate the impact of CFB on air pollution in NCP. The model simulations were compared with the in situ measurements of PM2.5 (particular matter with radius less than 2.5 μm) concentrations. The model evaluation shows that the correlation coefficients (R) between measured and calculated values exceeds 0.80 and absolute normalized mean bias (NMB) is no more than 14 %. In addition, the simulated meteorological parameters such as winds and planetary boundary layer height (PBLH) are also in good agreement with observations. The model was intensive used to study (1) the impacts of CFB and (2) the effect of mountains on regional air quality. The results show that the CFB occurred in southern NCP (SNCP) had significant effect on PM2.5 concentrations locally, causing a maximum of 35 % PM2.5 increase in SNCP. Because of south wind condition, the CFB pollution plume is subjective a long transport to northern NCP (NNCP-with several mega cities, including Beijing of the capital city in China), where there are no significant CFB occurrences, causing a maximum of 32 % PM2.5 increase in NNCP. As a result, the heavy haze in Beijing is enhanced by the CFB occurred in SNCP. Further more, there are two major mountains located in the western and northern NCP. Under the south wind condition, these mountains play important roles in enhancing the PM2.5 pollution in NNCP through the blocking and guiding effects. This study suggests that the PM2.5 emissions in SNCP region should be significantly limited in order to reduce the occurrences of heavy haze events in NNCP region, including the Beijing City.


2018 ◽  
Vol 201 ◽  
pp. 235-246 ◽  
Author(s):  
Jianan Zou ◽  
Zirui Liu ◽  
Bo Hu ◽  
Xiaojuan Huang ◽  
Tianxue Wen ◽  
...  

2016 ◽  
Vol 8 (4) ◽  
pp. 613-633 ◽  
Author(s):  
Lijuan Zhang ◽  
Jinxia Wang ◽  
Guangsheng Zhang ◽  
Qiuqiong Huang

Purpose The purpose of this paper is: to track the methods by which farmers access groundwater for irrigation in the North China Plain (NCP); to explore whether climate factors influence farmers’ decisions on the methods of groundwater access for irrigation; and to examine whether the amount of groundwater use for irrigation and crop yield systematically differ across groups of farmers using various methods of groundwater access, and how climate factors affect them. Design/methodology/approach Descriptive statistical analysis and econometric models are used on household survey data collected over several years and county-level climate data. Findings Over the past few decades, a significant share of farmers have switched the methods of groundwater access from collective tubewells to own tubewells or groundwater markets. Farmers who bought water from groundwater markets applied less water to wheat plots than those who had their own tubewells. However, wheat yield was not negatively affected. Both average climate conditions and long-term variations were found to be related to farmers’ choice of methods of groundwater access for irrigation. More frequent droughts and increasingly volatile temperatures both increased the likelihood of farmers gaining groundwater irrigation from markets. Originality/value The analysis results suggest farmers are using groundwater markets to help them adapt to climate change. Applying empirical analysis to identify the impact of the methods by which farmers access groundwater for irrigation on the amount of groundwater use and crop yield will help policy makers design reasonable adaptation policies for the NCP.


2019 ◽  
Author(s):  
Xiadong An ◽  
Lifang Sheng ◽  
Qian Liu ◽  
Chun Li ◽  
Yang Gao ◽  
...  

Abstract. Severe haze occurred in the North China Plain (NCP) from November to December 2015, with a wide spatial range and long duration. In this paper, the combined effect of two westerly jet waveguides on haze in the NCP was investigated based on visibility observational data and NCEP/NCAR reanalysis data. The results showed that the two Rossby waveguides within the westerly jet originating from the Mediterranean were responsible for the haze formation in the NCP. The Rossby wave propagated eastward along the subtropical westerly jet and the polar front jet, causing an anomalous anticyclone over the Sea of Japan and anticyclonic wind speed shear at 850 hPa over the NCP, which enhanced the anomalous descending air motion in the middle and lower troposphere and subsequently resulted in a stable atmosphere. Furthermore, the Rossby wave weakened the East Asia trough and Ural ridge, and strengthened the anomalous southerly wind at 850 hPa over the coastal areas of east China, decelerating the East Asia winter monsoon. The above meteorological conditions modulated haze accumulation in November and December 2015. Meanwhile, continuous rainfall related to ascending motion due to Rossby wave propagation along the subtropical westerly jet occurred in a large area of southern China. The latent heat released by rainfall acted as a heat source, inducing convection over South China. This further strengthened the ascending motion over South China so that the descending motion over the NCP was maintained, favoring the maintenance of severe haze. This study is of great significance to elucidate the formation and maintenance mechanism of large-scale haze in the NCP in late fall and boreal winter.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Long-Fei Zhan ◽  
Yanjun Wang ◽  
Hemin Sun ◽  
Jianqing Zhai ◽  
Mingjin Zhan

In accordance with the China Meteorological Administration definition, this study considered a weather process with a maximum surface temperature of ≥35°C for more than three consecutive days as a heatwave event. Based on a dataset of daily maximum temperatures from meteorological stations on the North China Plain, including ordinary and national basic/reference surface stations, the intensity-area-duration method was used to analyze the spatiotemporal distribution characteristics of heatwave events on the North China Plain (1961–2017). Moreover, based on demographic data from the Statistical Yearbook and Greenhouse Gas Initiative (GGI) Population Scenario Database of the Austrian Institute for International Applied Systems Analysis (IIASA), population exposure to heatwave events was also studied. The results showed that the frequency, intensity, and area of impact of heatwave events on the North China Plain initially decreased (becoming weaker and less extensive) and then increased (becoming stronger and more extensive). Similarly, the trend of population exposure to heatwave events initially decreased and then increased, and the central position of exposure initially moved southward and then returned northward. Population exposure in the eastern Taihang Mountains was found significantly higher than in the western Taihang Mountains. In relation to the change of population exposure to heatwave events on the North China Plain, the influence of climatic factors was found dominant with an absolute contribution rate of >75%. Except for 2011–2017, increase in population also increased the exposure to heatwaves, particularly in the first half of the study period. Interaction between climatic and population factors generally had less impact on population exposure than either climatic factors or population factors alone. This study demonstrated a method for assessing the impact of heatwave events on population exposure, which could form a scientific basis for the development of government policy regarding adaption to climate change.


2019 ◽  
Vol 19 (13) ◽  
pp. 8703-8719 ◽  
Author(s):  
Jiarui Wu ◽  
Naifang Bei ◽  
Bo Hu ◽  
Suixin Liu ◽  
Meng Zhou ◽  
...  

Abstract. Atmospheric aerosols scatter or absorb a fraction of the incoming solar radiation to cool or warm the atmosphere, decreasing surface temperature and altering atmospheric stability to further affect the dispersion of air pollutants in the planetary boundary layer (PBL). In the present study, simulations during a persistent and heavy haze pollution episode from 5 December 2015 to 4 January 2016 in the North China Plain (NCP) were performed using the Weather Research and Forecasting model with Chemistry (WRF-Chem) to comprehensively quantify contributions of aerosol shortwave radiative feedback (ARF) to near-surface (around 15 m above the ground surface) PM2.5 mass concentrations. The WRF-Chem model generally performs well in simulating the temporal variations and spatial distributions of air pollutants concentrations compared to observations at ambient monitoring sites in the NCP, and the simulated diurnal variations of aerosol species are also consistent with the measurements in Beijing. Additionally, the model simulates the aerosol radiative properties, the downward shortwave flux, and the PBL height against observations in the NCP well. During the episode, ARF deteriorates the haze pollution, increasing the near-surface PM2.5 concentrations in the NCP by 10.2 µg m−3 or with a contribution of 7.8 % on average. Sensitivity studies have revealed that high loadings of PM2.5 attenuate the incoming solar radiation reaching the surface to cool the low-level atmosphere, suppressing the development of the PBL, decreasing the surface wind speed, further hindering the PM2.5 dispersion, and consequently exacerbating the haze pollution in the NCP. Furthermore, when the near-surface PM2.5 mass concentration increases from around 50 to several hundred µg m−3, ARF contributes to the near-surface PM2.5 by more than 20 % during daytime in the NCP, substantially aggravating the heavy haze formation. However, when the near-surface PM2.5 concentration is less than around 50 µg m−3, ARF generally reduces the near-surface PM2.5 concentration due to the consequent perturbation of atmospheric dynamic fields.


2016 ◽  
Vol 16 (17) ◽  
pp. 10985-11000 ◽  
Author(s):  
Yin Wang ◽  
Zhongming Chen ◽  
Qinqin Wu ◽  
Hao Liang ◽  
Liubin Huang ◽  
...  

Abstract. Measurements of atmospheric peroxides were made during Wangdu Campaign 2014 at Wangdu, a rural site in the North China Plain (NCP) in summer 2014. The predominant peroxides were detected to be hydrogen peroxide (H2O2), methyl hydroperoxide (MHP) and peroxyacetic acid (PAA). The observed H2O2 reached up to 11.3 ppbv, which was the highest value compared with previous observations in China at summer time. A box model simulation based on the Master Chemical Mechanism and constrained by the simultaneous observations of physical parameters and chemical species was performed to explore the chemical budget of atmospheric peroxides. Photochemical oxidation of alkenes was found to be the major secondary formation pathway of atmospheric peroxides, while contributions from alkanes and aromatics were of minor importance. The comparison of modeled and measured peroxide concentrations revealed an underestimation during biomass burning events and an overestimation on haze days, which were ascribed to the direct production of peroxides from biomass burning and the heterogeneous uptake of peroxides by aerosols, respectively. The strengths of the primary emissions from biomass burning were on the same order of the known secondary production rates of atmospheric peroxides during the biomass burning events. The heterogeneous process on aerosol particles was suggested to be the predominant sink for atmospheric peroxides. The atmospheric lifetime of peroxides on haze days in summer in the NCP was about 2–3 h, which is in good agreement with the laboratory studies. Further comprehensive investigations are necessary to better understand the impact of biomass burning and heterogeneous uptake on the concentration of peroxides in the atmosphere.


2018 ◽  
Vol 170 (3) ◽  
pp. 489-505 ◽  
Author(s):  
Changwei Liu ◽  
Zhiqiu Gao ◽  
Yubin Li ◽  
Chloe Y. Gao ◽  
Zhongbo Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document