scholarly journals Sensitivity of the tropical stratospheric ozone response to the solar rotational cycle in observations and chemistry-climate model simulations

2017 ◽  
Author(s):  
Rémi Thiéblemont ◽  
Marion Marchand ◽  
Slimane Bekki ◽  
Sébastien Bossay ◽  
Franck Lefèvre ◽  
...  

Abstract. The tropical stratospheric ozone response to solar UV variations associated with the rotational cycle (~ 27 days) is analysed using MLS satellite observations and numerical simulations from the LMDz-Reprobus chemistry-climate model. The model is used in two configurations, as a chemistry-transport model (CTM) where dynamics are nudged toward ERA-Interim reanalysis and as a chemistry-climate model (free-running) (CCM). An ensemble of five 17 year simulations (1991–2007) is performed with the CCM. All simulations are forced by reconstructed time-varying solar spectral irradiance from the Naval Research Laboratory Solar Spectral Irradiance model. We first examine the ozone response to the solar rotational cycle during two 3 year periods which correspond to the declining phases of solar cycle 22 (10/1991–09/1994) and solar cycle 23 (09/200408/2007) when the satellite ozone observations of the two Microwave Limb Sounders (MLS-UARS and MLS-Aura) are available. In the observations, during the first period, ozone and UV flux are found to be correlated between about 10 and 1 hPa with a maximum of 0.29 at ~ 5 hPa; the ozone sensitivity (% change in ozone for 1 % change in UV) peaks at ~ 0.4. Correlation during the second period is weaker and has a peak ozone sensitivity of only 0.2, possibly due to the fact that the solar forcing is weaker during that period. The CTM simulation reproduces most of these observed features, including the differences between the two periods. The CCM ensemble mean results comparatively show much smaller differences between the two periods, suggesting that the amplitude of the rotational ozone signal estimated from MLS observations or the CTM simulation is strongly influenced by other (non-solar) sources of variability, notably dynamics. The analysis of the ensemble of CCM simulations shows that the estimation of the ensemble mean ozone sensitivity does not vary significantly neither with the amplitude of the solar rotational fluctuations, nor with the size of the time window used for the ozone sensitivity retrieval. In contrast, the uncertainty of the ozone sensitivity estimate significantly increases during periods of decreasing amplitude of solar rotational fluctuations (also coinciding with minimum phases of the solar cycle), and for decreasing size of the time window analysis. We found that a minimum of 3 year and 10 year time window is needed for the 1σ uncertainty to drop below 50 % and 20 %, respectively. These uncertainty sources may explain some of the discrepancies found in previous estimates of the ozone response to the solar rotational cycle.

2017 ◽  
Vol 17 (16) ◽  
pp. 9897-9916 ◽  
Author(s):  
Rémi Thiéblemont ◽  
Marion Marchand ◽  
Slimane Bekki ◽  
Sébastien Bossay ◽  
Franck Lefèvre ◽  
...  

Abstract. The tropical stratospheric ozone response to solar UV variations associated with the rotational cycle (∼ 27 days) is analyzed using MLS satellite observations and numerical simulations from the LMDz-Reprobus chemistry–climate model. The model is used in two configurations, as a chemistry-transport model (CTM) where dynamics are nudged toward ERA-Interim reanalysis and as a chemistry–climate model (free-running) (CCM). An ensemble of five 17-year simulations (1991–2007) is performed with the CCM. All simulations are forced by reconstructed time-varying solar spectral irradiance from the Naval Research Laboratory Solar Spectral Irradiance model. We first examine the ozone response to the solar rotational cycle during two 3-year periods which correspond to the declining phases of solar cycle 22 (October 1991–September 1994) and solar cycle 23 (September 2004–August 2007), when the satellite ozone observations of the two Microwave Limb Sounders (UARS MLS and Aura MLS) are available. In the observations, during the first period, ozone and UV flux are found to be correlated between about 10 and 1 hPa with a maximum of 0.29 at ∼ 5 hPa; the ozone sensitivity (% change in ozone for 1 % change in UV) peaks at ∼ 0.4. Correlation during the second period is weaker and has a peak ozone sensitivity of only 0.2, possibly due to the fact that the solar forcing is weaker during that period. The CTM simulation reproduces most of these observed features, including the differences between the two periods. The CCM ensemble mean results comparatively show much smaller differences between the two periods, suggesting that the amplitude of the rotational ozone signal estimated from MLS observations or the CTM simulation is strongly influenced by other (non-solar) sources of variability, notably dynamics. The analysis of the ensemble of CCM simulations shows that the estimation of the ensemble mean ozone sensitivity does not vary significantly either with the amplitude of the solar rotational fluctuations or with the size of the time window used for the ozone sensitivity retrieval. In contrast, the uncertainty of the ozone sensitivity estimate significantly increases during periods of decreasing amplitude of solar rotational fluctuations (also coinciding with minimum phases of the solar cycle), and for decreasing size of the time window analysis. We found that a minimum of 3- and 10-year time window is needed for the 1σ uncertainty to drop below 50 and 20 %, respectively. These uncertainty sources may explain some of the discrepancies found in previous estimates of the ozone response to the solar rotational cycle.


2012 ◽  
Vol 12 (13) ◽  
pp. 5937-5948 ◽  
Author(s):  
W. H. Swartz ◽  
R. S. Stolarski ◽  
L. D. Oman ◽  
E. L. Fleming ◽  
C. H. Jackman

Abstract. The 11-yr solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM). The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7) in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOSCCM and the Goddard Space Flight Center (GSFC) 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. This is important in that it means that chemistry-transport models should simulate the solar cycle in ozone well, while general circulation models without coupled chemistry will underestimate the temperature response to the solar cycle significantly in the middle atmosphere. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) and Spectral Irradiance Monitor (SIM) on SORCE, respectively. A higher wavelength-resolution analysis of the spectral response could allow for a better prediction of the atmospheric response to arbitrary SSI variations.


2012 ◽  
Vol 12 (3) ◽  
pp. 7039-7071 ◽  
Author(s):  
W. H. Swartz ◽  
R. S. Stolarski ◽  
L. D. Oman ◽  
E. L. Fleming ◽  
C. H. Jackman

Abstract. The 11-yr solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7) in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOS CCM and the Goddard Space Flight Center (GSFC) 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) and Spectral Irradiance Monitor (SIM) on SORCE, respectively. A higher wavelength-resolution analysis of the spectral response could allow for a better prediction of the atmospheric response to arbitrary SSI variations.


2017 ◽  
Author(s):  
Amanda C. Maycock ◽  
Katja Matthes ◽  
Susann Tegtmeier ◽  
Hauke Schmidt ◽  
Rémi Thiéblemont ◽  
...  

Abstract. The impact of changes in incoming solar irradiance on stratospheric ozone abundances should be included in climate model simulations to fully capture the atmospheric response to solar variability. This study presents the first systematic comparison of the solar-ozone response (SOR) during the 11 year solar cycle amongst different chemistry-climate models (CCMs) and ozone databases specified in climate models that do not include chemistry. We analyse the SOR in eight CCMs from the WCRP/SPARC Chemistry-Climate Model Initiative (CCMI-1) and compare these with three ozone databases: the Bodeker Scientific database, the SPARC/AC&C database for CMIP5, and the SPARC/CCMI database for CMIP6. The results reveal substantial differences in the representation of the SOR between the CMIP5 and CMIP6 ozone databases. The peak amplitude of theSOR in the upper stratosphere (1–5 hPa) decreases from 5 % to 2 % between the CMIP5 and CMIP6 databases. This difference is because the CMIP5 database was constructed from a regression model fit to satellite observations, whereas the CMIP6 database is constructed from CCM simulations, which use a spectral solar irradiance (SSI) dataset with relatively weak UV forcing. The SOR in the CMIP6 ozone database is therefore implicitly more similar to the SOR in the CCMI-1 models than to the CMIP5 ozone database, which shows a greater resemblance in amplitude and structure to the SOR in the Bodeker database. The latitudinal structure of the annual mean SOR in the CMIP6 ozone database and CCMI-1 models is considerably smoother than in the CMIP5 database, which shows strong gradients in the SOR across the midlatitudes owing to the paucity of observations at high latitudes. The SORs in the CMIP6 ozone database and in the CCMI-1 models show a strong seasonal dependence, including large meridional gradients at mid to high latitudes during winter; such seasonal variations in the SOR are not included in the CMIP5 ozone database. Sensitivity experiments with a global atmospheric model without chemistry (ECHAM6.3) are performed to assess the impact of changes in the representation of the SOR and SSI forcing between CMIP5 and CMIP6. The experiments show that the smaller amplitude of the SOR in the CMIP6 ozone database compared to CMIP5 causes a decrease in the modelled tropical stratospheric temperature response over the solar cycle of up to 0.6 K, or around 50 % of the total amplitude. The changes in the SOR explain most of the difference in the amplitude of the tropical stratospheric temperature response in the case with combined changes in SOR and SSI between CMIP5 and CMIP6. The results emphasise the importance of adequately representing the SOR in climate models to capture the impact of solar variability on the atmosphere. Since a number of limitations in the representation of the SOR in the CMIP5 ozone database have been identified, CMIP6 models without chemistry are encouraged to use the CMIP6 ozone database to capture the climate impacts of solar variability.


2020 ◽  
Vol 645 ◽  
pp. A2
Author(s):  
M. Meftah ◽  
M. Snow ◽  
L. Damé ◽  
D. Bolseé ◽  
N. Pereira ◽  
...  

Context. Solar spectral irradiance (SSI) is the wavelength-dependent energy input to the top of the Earth’s atmosphere. Solar ultraviolet (UV) irradiance represents the primary forcing mechanism for the photochemistry, heating, and dynamics of the Earth’s atmosphere. Hence, both temporal and spectral variations in solar UV irradiance represent crucial inputs to the modeling and understanding of the behavior of the Earth’s atmosphere. Therefore, measuring the long-term solar UV irradiance variations over the 11-year solar activity cycle (and over longer timescales) is fundamental. Thus, each new solar spectral irradiance dataset based on long-term observations represents a major interest and can be used for further investigations of the long-term trend of solar activity and the construction of a homogeneous solar spectral irradiance record. Aims. The main objective of this article is to present a new solar spectral irradiance database (SOLAR-v) with the associated uncertainties. This dataset is based on solar UV irradiance observations (165−300 nm) of the SOLAR/SOLSPEC space-based instrument, which provides measurements of the full-disk SSI during solar cycle 24. Methods. SOLAR/SOLSPEC made solar acquisitions between April 5, 2008 and February 10, 2017. During this period, the instrument was affected by the harsh space environment that introduces instrumental trends (degradation) in the SSI measurements. A new method based on an adaptation of the Multiple Same-Irradiance-Level (MuSIL) technique was used to separate solar variability and any uncorrected instrumental trends in the SOLAR/SOLSPEC UV irradiance measurements. Results. A new method for correcting degradation has been applied to the SOLAR/SOLSPEC UV irradiance records to provide new solar cycle variability results during solar cycle 24. Irradiances are reported at a mean solar distance of 1 astronomical unit (AU). In the 165−242 nm spectral region, the SOLAR/SOLSPEC data agrees with the observations (SORCE/SOLSTICE) and models (SATIRE-S, NRLSSI 2) to within the 1-sigma error envelope. Between 242 and 300 nm, SOLAR/SOLSPEC agrees only with the models.


2018 ◽  
Vol 18 (15) ◽  
pp. 11323-11343 ◽  
Author(s):  
Amanda C. Maycock ◽  
Katja Matthes ◽  
Susann Tegtmeier ◽  
Hauke Schmidt ◽  
Rémi Thiéblemont ◽  
...  

Abstract. The impact of changes in incoming solar irradiance on stratospheric ozone abundances should be included in climate simulations to aid in capturing the atmospheric response to solar cycle variability. This study presents the first systematic comparison of the representation of the 11-year solar cycle ozone response (SOR) in chemistry–climate models (CCMs) and in pre-calculated ozone databases specified in climate models that do not include chemistry, with a special focus on comparing the recommended protocols for the Coupled Model Intercomparison Project Phase 5 and Phase 6 (CMIP5 and CMIP6). We analyse the SOR in eight CCMs from the Chemistry–Climate Model Initiative (CCMI-1) and compare these with results from three ozone databases for climate models: the Bodeker Scientific ozone database, the SPARC/Atmospheric Chemistry and Climate (AC&C) ozone database for CMIP5 and the SPARC/CCMI ozone database for CMIP6. The peak amplitude of the annual mean SOR in the tropical upper stratosphere (1–5 hPa) decreases by more than a factor of 2, from around 5 to 2 %, between the CMIP5 and CMIP6 ozone databases. This substantial decrease can be traced to the CMIP5 ozone database being constructed from a regression model fit to satellite and ozonesonde measurements, while the CMIP6 database is constructed from CCM simulations. The SOR in the CMIP6 ozone database therefore implicitly resembles the SOR in the CCMI-1 models. The structure in latitude of the SOR in the CMIP6 ozone database and CCMI-1 models is considerably smoother than in the CMIP5 database, which shows unrealistic sharp gradients in the SOR across the middle latitudes owing to the paucity of long-term ozone measurements in polar regions. The SORs in the CMIP6 ozone database and the CCMI-1 models show a seasonal dependence with enhanced meridional gradients at mid- to high latitudes in the winter hemisphere. The CMIP5 ozone database does not account for seasonal variations in the SOR, which is unrealistic. Sensitivity experiments with a global atmospheric model without chemistry (ECHAM6.3) are performed to assess the atmospheric impacts of changes in the representation of the SOR and solar spectral irradiance (SSI) forcing between CMIP5 and CMIP6. The larger amplitude of the SOR in the CMIP5 ozone database compared to CMIP6 causes a likely overestimation of the modelled tropical stratospheric temperature response between 11-year solar cycle minimum and maximum by up to 0.55 K, or around 80 % of the total amplitude. This effect is substantially larger than the change in temperature response due to differences in SSI forcing between CMIP5 and CMIP6. The results emphasize the importance of adequately representing the SOR in global models to capture the impact of the 11-year solar cycle on the atmosphere. Since a number of limitations in the representation of the SOR in the CMIP5 ozone database have been identified, we recommend that CMIP6 models without chemistry use the CMIP6 ozone database and the CMIP6 SSI dataset to better capture the climate impacts of solar variability. The SOR coefficients from the CMIP6 ozone database are published with this paper.


2015 ◽  
Vol 33 (3) ◽  
pp. 267-277 ◽  
Author(s):  
I. Bordi ◽  
F. Berrilli ◽  
E. Pietropaolo

Abstract. The long-term variability in stratospheric ozone mass mixing ratio (O3) and temperature (T) from 1979 to 2013 is investigated using the latest reanalysis product delivered by the European Centre for Medium-Range Weather Forecasts (ECMWF), i.e., ERA-Interim. Moreover, using the Mg II index time series for the same time period, the response of the stratosphere to the 11-year Schwabe solar cycle is investigated. Results reveal the following features: (i) upward (downward) trends characterize zonally averaged O3 anomalies in the upper (middle to lower stratosphere) stratosphere, while prevailing downward trends affect the T field. Mg II index data exhibit a weaker 24th solar cycle (though not complete) when compared with the previous two; (ii) correlations between O3 and Mg II, T and Mg II, and O3 and T are consistent with photochemical reactions occurring in the stratosphere and large-scale transport; and (iii) wavelet cross-spectra between O3 and Mg II index show common power for the 11-year period, particularly in tropical regions around 30–50 hPa, and different relative phase in the upper and lower stratosphere. A comprehensive insight into the actual processes accounting for the observed correlation between ozone and solar UV variability would be gained from an improved bias correction of ozone measurements provided by different satellite instruments, and from the observations of the time behavior of the solar spectral irradiance.


2013 ◽  
Vol 13 (4) ◽  
pp. 2063-2090 ◽  
Author(s):  
P. J. Young ◽  
A. T. Archibald ◽  
K. W. Bowman ◽  
J.-F. Lamarque ◽  
V. Naik ◽  
...  

Abstract. Present day tropospheric ozone and its changes between 1850 and 2100 are considered, analysing 15 global models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean compares well against present day observations. The seasonal cycle correlates well, except for some locations in the tropical upper troposphere. Most (75 %) of the models are encompassed with a range of global mean tropospheric ozone column estimates from satellite data, but there is a suggestion of a high bias in the Northern Hemisphere and a low bias in the Southern Hemisphere, which could indicate deficiencies with the ozone precursor emissions. Compared to the present day ensemble mean tropospheric ozone burden of 337 ± 23 Tg, the ensemble mean burden for 1850 time slice is ~30% lower. Future changes were modelled using emissions and climate projections from four Representative Concentration Pathways (RCPs). Compared to 2000, the relative changes in the ensemble mean tropospheric ozone burden in 2030 (2100) for the different RCPs are: −4% (−16%) for RCP2.6, 2% (−7%) for RCP4.5, 1% (−9%) for RCP6.0, and 7% (18%) for RCP8.5. Model agreement on the magnitude of the change is greatest for larger changes. Reductions in most precursor emissions are common across the RCPs and drive ozone decreases in all but RCP8.5, where doubled methane and a 40–150% greater stratospheric influx (estimated from a subset of models) increase ozone. While models with a high ozone burden for the present day also have high ozone burdens for the other time slices, no model consistently predicts large or small ozone changes; i.e. the magnitudes of the burdens and burden changes do not appear to be related simply, and the models are sensitive to emissions and climate changes in different ways. Spatial patterns of ozone changes are well correlated across most models, but are notably different for models without time evolving stratospheric ozone concentrations. A unified approach to ozone budget specifications and a rigorous investigation of the factors that drive tropospheric ozone is recommended to help future studies attribute ozone changes and inter-model differences more clearly.


2013 ◽  
Vol 13 (8) ◽  
pp. 3945-3977 ◽  
Author(s):  
I. Ermolli ◽  
K. Matthes ◽  
T. Dudok de Wit ◽  
N. A. Krivova ◽  
K. Tourpali ◽  
...  

Abstract. The lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE (SOlar Radiation and Climate Experiment) satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earth's atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earth's climate. We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earth's atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temperature and ozone distributions in the stratosphere, and indirectly, through dynamical feedbacks. We investigate these direct and indirect effects using several state-of-the art CCM simulations forced with measured and modelled SSI changes. A unique asset of this study is the use of a common comprehensive approach for an issue that is usually addressed separately by different communities. We show that the SORCE measurements are difficult to reconcile with earlier observations and with SSI models. Of the five SSI models discussed here, specifically NRLSSI (Naval Research Laboratory Solar Spectral Irradiance), SATIRE-S (Spectral And Total Irradiance REconstructions for the Satellite era), COSI (COde for Solar Irradiance), SRPM (Solar Radiation Physical Modelling), and OAR (Osservatorio Astronomico di Roma), only one shows a behaviour of the UV and visible irradiance qualitatively resembling that of the recent SORCE measurements. However, the integral of the SSI computed with this model over the entire spectral range does not reproduce the measured cyclical changes of the total solar irradiance, which is an essential requisite for realistic evaluations of solar effects on the Earth's climate in CCMs. We show that within the range provided by the recent SSI observations and semi-empirical models discussed here, the NRLSSI model and SORCE observations represent the lower and upper limits in the magnitude of the SSI solar cycle variation. The results of the CCM simulations, forced with the SSI solar cycle variations estimated from the NRLSSI model and from SORCE measurements, show that the direct solar response in the stratosphere is larger for the SORCE than for the NRLSSI data. Correspondingly, larger UV forcing also leads to a larger surface response. Finally, we discuss the reliability of the available data and we propose additional coordinated work, first to build composite SSI data sets out of scattered observations and to refine current SSI models, and second, to run coordinated CCM experiments.


2012 ◽  
Vol 12 (1) ◽  
pp. 1867-1893 ◽  
Author(s):  
K.-F. Li ◽  
X. Jiang ◽  
M.-C. Liang ◽  
Y. L. Yung

Abstract. Total column ozone (XO3) abundance in Earth's atmosphere is intimately related to atmospheric chemistry and dynamics. Understanding the solar-cycle modulations of XO3 helps distinguish anthropogenic perturbations from natural variability during the ozone recovery. Here, the solar-cycle signal of tropical XO3 in the Whole Atmosphere Community Climate Model (WACCM) model has been examined using solar spectral irradiance (SSI) estimated from the Naval Research Laboratory (NRL) solar model and that from recent satellite measurements observed by the Solar Radiation and Climate Experiment (SORCE). Four experiments have been conducted with NRL/SORCE SSI and climatological/realistic sea surface temperatures and ice, and all other variability is fixed. In the tropical region 24° S–24° N, using the SORCE SSI as a model input leads to a solar-cycle response of ~5.4 DU/100F10.7, which is ~2 times of that obtained using NRL SSI. The results are slightly different in the presence of El Niño/Southern Oscillation (ENSO) when realistic SST/ice is used, but these differences are within the regression uncertainty of ~0.6 DU/100F10.7. The solar-cycle responses simulated using SORCE SSI agree with those obtained from the merged TOMS/SBUV satellite observations. Using NRL SSI as a model input results in solar-cycle responses that are closer to the ground-based observations, although the accuracy of the latter is limited by the number of stations in the tropics. In all model experiments, the tropical distribution of the solar-cycle response is constant to within ~0.5 DU/100F10.7, which is of the same order as the regression uncertainty. The spatial structures of the regression uncertainty are shown to be correlated with ENSO in the Pacific region. The solar-cycle response obtained using SORCE SSI implies a maximum change in lower stratospheric temperature of ~0.8 K. This may lead to significant impacts on the model solar-cycle responses in atmospheric circulation, precipitation and other hydrological variables that are important for the climate change.


Sign in / Sign up

Export Citation Format

Share Document