scholarly journals Magnetic signatures of natural and anthropogenic sources of urban dust aerosol

Author(s):  
Haijiao Liu ◽  
Yan Yan ◽  
Hong Chang ◽  
Hongyun Chen ◽  
Lianji Liang ◽  
...  

Abstract. The characteristics of urban dust aerosols and the contributions of their natural and anthropogenic sources are of scientific interest as well as being of substantial sociopolitical and economic concern. Here we present the results of a comprehensive study of dust flux and magnetic signatures, including magnetic susceptibility (χ) and the morphology and elemental composition of magnetic particulates, of atmospheric dustfall originating from natural dust sources in East Asia and local anthropogenic sources in Xi'an, China. The results reveal a significant inverse relationship, on a seasonal basis, between variations in dust flux and χ. By comparing χ records of desert surface sediments and local polluted dust, the relative contributions of natural and anthropogenic sources can be estimated for the urban atmospheric dustfall. Analysis using Scanning Electron Microscopy (SEM) combined with Energy Dispersive Spectroscopy (EDS) indicates that magnetic particulates from different sources have distinctive morphological and elemental characteristics. Detrital magnetic particles originating from natural sources are characterized by relatively smooth surfaces with Fe and O as the major elements and a minor contribution from Ti. The anthropogenic particles have angular, spherule, aggregate, and porous shapes with distinctive contributions from marker elements, including S, Cr, Cu, Zn, Ni, Mn and Ca. Our results demonstrate that this multidisciplinary approach is effective in distinguishing dust derived from distant natural sources and local anthropogenic sources, and for quantitative assessment of the contributions of the two end-members.

2019 ◽  
Vol 19 (2) ◽  
pp. 731-745 ◽  
Author(s):  
Haijiao Liu ◽  
Yan Yan ◽  
Hong Chang ◽  
Hongyun Chen ◽  
Lianji Liang ◽  
...  

Abstract. The characteristics of urban dust aerosols and the contributions of their natural and anthropogenic sources are of scientific interest as well as being of substantial sociopolitical and economic concern. Here we present a comprehensive study of dust flux, magnetic parameters, magnetic particulate morphology, and elemental compositions of atmospheric dustfall originating from natural dust sources in East Asia and local anthropogenic sources in Xi'an, China. The results reveal a significant inverse relationship between seasonal variations of dust flux and magnetic susceptibility (χ). By comparing dust flux and χ records, the relative contributions of dust from local anthropogenic sources are estimated. Analyses using scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) indicate that magnetic particulate from different sources has distinct morphological and elemental characteristics. Detrital magnetic particles originating from natural sources are characterized by relatively smooth surfaces with Fe and O as the major elements and a minor contribution from Ti. The anthropogenic particles have angular, spherical, aggregate, and porous shapes with distinctive contributions from marker elements, including S, Cr, Cu, Zn, Ni, Mn, and Ca. Our results demonstrate that this multidisciplinary approach is effective in distinguishing dust particles derived from distant natural sources and local anthropogenic sources and for the quantitative assessment of contributions from the two end-members.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2891
Author(s):  
Ignasi Herms ◽  
Jorge Jódar ◽  
Albert Soler ◽  
Luís Javier Lambán ◽  
Emilio Custodio ◽  
...  

The Port del Comte Massif (SE, Pyrenees) contains one of the most important vulnerable and strategic karst aquifers for supplying freshwater to the city of Barcelona (Spain). It is a fragile system, whose possible environmental impact is highly conditioned by land use. To improve the hydrogeological knowledge of the system, between September 2013 and October 2015, a detailed fieldwork was carried out for the revision of the geological model, the inventory of water points, and the in situ physico-chemical characterization on major elements and isotopes of up to a total of 43 springs, as well as precipitation water. This paper focuses on the characterization of the geochemical processes that allow explanation of the observed chemical variability of groundwater drained by the pristine aquifer system to determine the origin of salinity. The results show that the main process is the dissolution of calcite and dolomite, followed by gypsum and halite, and a minor cation exchange-like process. Sulfur and oxygen isotopes from dissolved sulfate in the studied springs point out a geogenic origin related to the dissolution of gypsum from Triassic and Tertiary materials, and that the contribution from anthropogenic sources, like fertilizers, is lower. Nitrate in groundwater is not an important issue, with a few localized cases related with agricultural activities. The multidisciplinary approach has allowed the development of a consistent hydrogeological conceptual model of the functioning of the aquifer system, which can be replicated in other places to understand the geogenic character of the hydrogeochemistry.


2019 ◽  
Vol 70 (3) ◽  
pp. 382 ◽  
Author(s):  
Nidia I. Tobón Velázquez ◽  
Mario Rebolledo Vieyra ◽  
Adina Paytan ◽  
Kyle H. Broach ◽  
Laura M. Hernández Terrones

The aim of the study is to determine the distribution of trace and major elements in the water and in the sediments of the south part of the Bacalar Lagoon and to identify the sources of the trace elements and their changes over time. The western part of the lagoon water column is characterised by high concentrations of Ca2+, HCO3– and Sr2+, derived from groundwater input. In contrast, the eastern part of the lagoon is characterised by high concentrations of Mg2+, Na+ and Cl–. The lagoon is not affected by present-day seawater intrusion. Water column and sediment geochemical analyses performed in Bacalar Lagoon show clear spatial distribution of different parameters. The saturation index of the water column indicates three main groups: (1) a zone oversaturated with regard to aragonite, calcite and dolomite; (2) an undersaturated area where all three minerals are dissolving; and (3) an area with calcite equilibrium and undersaturation with regard to the other minerals. Herein we present the first measurements of trace element (Ba2+, Mn2+, K+, Ni2+, Zn2+) concentrations in carbonates obtained from sediments in Bacalar Lagoon. In order to evaluate whether the trace elements are derived from natural or anthropogenic sources, four pollution indices were calculated. The results confirmed that Bacalar Lagoon sediments are not contaminated with Ni2+, K+, Mn2+ and Ba2+, and that the Zn2+ seems to have a predominantly anthropogenic origin.


2018 ◽  
Author(s):  
Jean J. Guo ◽  
Arlene M. Fiore ◽  
Lee T. Murray ◽  
Daniel A. Jaffe ◽  
Jordan L. Schnell ◽  
...  

Abstract. U.S. background ozone (O3) includes O3 produced from anthropogenic O3 precursors emitted outside of the U.S.A., from global methane, and from any natural sources. Using a suite of sensitivity simulations in the GEOS-Chem global chemistry-transport model, we estimate the influence from individual background versus U.S. anthropogenic sources on total surface O3 over ten continental U.S. regions from 2004–2012. Evaluation with observations reveals model biases of +0–19 ppb in seasonal mean maximum daily 8-hour average (MDA8) O3, highest in summer over the eastern U.S.A. Simulated high-O3 events cluster too late in the season. We link these model biases to regional O3 production (e.g., U.S. anthropogenic, biogenic volatile organic compounds (BVOC), and soil NOx, emissions), or coincident missing sinks. On the ten highest observed O3 days during summer (O3_top10obs_JJA), U.S. anthropogenic emissions enhance O3 by 5–11 ppb and by less than 2 ppb in the eastern versus western U.S.A. The O3 enhancement from BVOC emissions during summer is 1–7 ppb higher on O3_top10obs_JJA days than on average days, while intercontinental pollution is up to 2 ppb higher on average vs. on O3_top10obs_JJA days. In the model, regional sources of O3 precursor emissions drive interannual variability in the highest observed O3 levels. During the summers of 2004–2012, monthly regional mean U.S. background O3 MDA8 levels vary by 10–20 ppb. Simulated summertime total surface O3 levels on O3_top10obs_JJA days decline by 3 ppb (averaged over all regions) from 2004–2006 to 2010–2012 in both the observations and the model, reflecting rising U.S. background (+2 ppb) and declining U.S. anthropogenic O3 emissions (−6 ppb). The model attributes interannual variability in U.S. background O3 on O3_top10obs days to natural sources, not international pollution transport. We find that a three-year averaging period is not long enough to eliminate interannual variability in background O3.


1996 ◽  
Vol 150 ◽  
pp. 291-294 ◽  
Author(s):  
G. J. Flynn ◽  
S. Bajt ◽  
S. R. Sutton ◽  
M. E. Zolensky ◽  
K. L. Thomas ◽  
...  

AbstractThe abundances of Ni, Fe, Cr, Mn, P, Cu, K, Na, Ga, Ge, Se, Zn, S, Br, and C were measured in interplanetary dust particles (IDPs) collected from the Earth's stratosphere. All elements with nebular condensation temperatures lower than Mn, except S, were enriched relative to the most volatile-rich type of meteorite while the refractory elements Cr and Ni were present at chondritic abundances. This element abundance pattern is consistent with nebular condensation, suggesting the IDPs condensed at either a different location or time in the evolving solar nebula than do the meteorites. The enrichments of the major elements C, Na, P, and K exclude the possibility that the volatile enrichment in IDPs results from a minor amount of contamination.


2020 ◽  
Author(s):  
Kouji Adachi ◽  
Naga Oshima ◽  
Zhaoheng Gong ◽  
Suzane de Sá ◽  
Adam P. Bateman ◽  
...  

Abstract. The Amazon basin is important for understanding the global climate both because of its carbon cycle and as a laboratory for obtaining basic knowledge of the continental background atmosphere. Aerosol particles play an important role in the climate and weather, and knowledge of their compositions and mixing states is necessary to understand their influence on the climate. For this study, we collected aerosol particles from the Amazon basin during the Green Ocean Amazon (GoAmazon2014/5) campaign (February to March 2014) at the T3 site, which locates about 70 km from Manaus, and analyzed using transmission electron microscopy (TEM). TEM has better spatial resolution than other instruments, which enables us to analyse the occurrences of components that attach to or are embedded within other particles. Based on the TEM results of more than 10,000 particles from several transport events, this study shows the occurrences of individual particles including compositions, size distributions, number fractions, and possible sources of materials that mix with other particles. Aerosol particles during the wet season were from both natural sources such as the Amazon forest, Saharan desert, Atlantic Ocean, and African biomass burning and anthropogenic sources such as Manaus and local emissions. These particles mix together at an individual particle scale. The number fractions of mineral dust and sea-salt particles increased almost three-fold when long-range transport (LRT) from the African continent occurred. Nearly 20 % of mineral dust and primary biological aerosol particles attached sea salts on their surfaces. Sulfates were also internally mixed with sea-salt and mineral dust particles. The TEM element mapping images showed that several components with sizes of hundreds of nanometres from different sources commonly occur within individual LRT aerosol particles. We conclude that many aerosol particles from natural sources change their compositions by mixing during transport. The compositions and mixing states of these particles after emission result in changes in their hygroscopic and optical properties and should be considered when assessing their effects on climate.


2019 ◽  
Vol 19 (5) ◽  
pp. 3125-3135 ◽  
Author(s):  
Luca Cappellin ◽  
Francesco Loreto ◽  
Franco Biasioli ◽  
Paolo Pastore ◽  
Karena McKinney

Abstract. Methyl ethyl ketone (MEK) is an important compound in atmospheric chemistry. While attention has been paid mostly to anthropogenic sources of MEK, recently it has been shown that biogenic sources are globally as important as anthropogenic ones. However, the origin of biogenic MEK has yet to be completely elucidated. We present the full mechanism by which within-plant transformation of methyl vinyl ketone (MVK) and, to a minor extent, of 2-butanol and 3-buten-2-ol, is a source of biogenic MEK. Such transformation is observed in red oak for both exogenous MVK, taken up from the atmosphere, and endogenous MVK generated within a plant when it experiences stress (e.g. heat stress). Endogenous MVK emitted by plants is typically explained by within-plant oxidation of isoprene caused by oxidative stress. In this study we show that MVK and MEK emissions caused by heat stress are not related to isoprene in isoprene-emitting plants, implying that the massive carbon investment that plants commit to isoprene production is not explained by a direct antioxidant role. The presented mechanism can be important for inclusion in plant emission and in plant–atmosphere interaction models.


Sign in / Sign up

Export Citation Format

Share Document