Supplementary material to "Impacts of black carbon on the formation of advection-radiation fog during a haze pollution episode in eastern China"

Author(s):  
Qiuji Ding ◽  
Jianning Sun ◽  
Xin Huang ◽  
Aijun Ding ◽  
Jun Zou ◽  
...  
2019 ◽  
Author(s):  
Qiuji Ding ◽  
Jianning Sun ◽  
Xin Huang ◽  
Aijun Ding ◽  
Jun Zou ◽  
...  

Abstract. Aerosols can not only participate in fog formation by acting as condensation nuclei of droplets but also modify the meteorological conditions such as air temperature and moisture, planetary boundary layer height (PBLH) and regional circulation during haze event. The impact of aerosols on fog formation, yet to be revealed, can be critical in understanding and predicting of fog-haze event. In this study, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to investigate a heavy fog event during a multiday intense haze pollution episode in early December 2013 in the Yangtze River Delta (YRD) region in eastern China. Using the WRF-Chem model, we conducted four parallel numerical experiments to evaluate the roles of aerosol-radiation interaction (ARI), aerosol-cloud interaction (ACI), black carbon (BC) and none BC (non-BC) aerosols in the formation and maintenance of the heavy fog event. Only when the aerosols' feedback processes are considered can the model well capture the haze pollution and the fog event. We find that the ARI dominates this fog-haze episode while the effects of ACI are negligible. Our analyses shows that BC plays a more important role in fog formation than non-BC aerosols. The dome effect of BC leads to an increase of air moisture over the sea by reducing PBLH and weakening vertical mixing, thereby confining more water vapor in the near-surface layer. The strengthened daytime onshore flow by a cyclonic wind anomaly, induced by contrast temperature perturbation over land and sea, transports moister air to the YRD region, where the suppressed PBLH and weakened daytime vertical mixing maintain the high moisture level. Then the heave fog forms due to the surface cooling at night in this region. This study highlights the importance of anthropogenic emissions in the formation of advection-radiation fog in the polluted coastal areas.


2019 ◽  
Vol 19 (11) ◽  
pp. 7759-7774 ◽  
Author(s):  
Qiuji Ding ◽  
Jianning Sun ◽  
Xin Huang ◽  
Aijun Ding ◽  
Jun Zou ◽  
...  

Abstract. Aerosols can not only participate in fog formation by acting as condensation nuclei of droplets but also modify the meteorological conditions such as air temperature and moisture, planetary boundary layer height (PBLH) and regional circulation during haze events. The impact of aerosols on fog formation, yet to be revealed, can be critical in understanding and predicting fog–haze events. In this study, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to investigate a heavy fog event during a multiday intense haze pollution episode in early December 2013 in the Yangtze River Delta (YRD) region in eastern China. Using the WRF-Chem model, we conducted four parallel numerical experiments to evaluate the roles of aerosol–radiation interaction (ARI), aerosol–cloud interaction (ACI), black carbon (BC) and non-BC aerosols in the formation and maintenance of the heavy fog event. We find that only when the aerosols' feedback processes are considered can the model capture the haze pollution and the fog event well. And the effects of ARI during the fog–haze episode in early December 2013 played a dominant role, while the effects of ACI were negligible. Furthermore, our analyses show that BC was more important in inducing fog formation in the YRD region on 7 December than non-BC aerosols. The dome effect of BC leads to an increase in air moisture over the sea by reducing PBLH and weakening vertical mixing, thereby confining more water vapor to the near-surface layer. The strengthened daytime onshore flow by a cyclonic wind anomaly, induced by contrast temperature perturbation over land and sea, transported moister air to the YRD region, where the suppressed PBLH and weakened daytime vertical mixing maintained the high moisture level. Then heavy fog formed due to the surface cooling at night. This study highlights the importance of anthropogenic emissions in the formation of advection–radiation fog in the polluted coastal areas.


2013 ◽  
Vol 57 (1) ◽  
pp. 14-25 ◽  
Author(s):  
YueSi Wang ◽  
Li Yao ◽  
LiLi Wang ◽  
ZiRui Liu ◽  
DongSheng Ji ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 870
Author(s):  
Fangfang Wang ◽  
Jialuo Xu ◽  
Yinzhi Huang ◽  
Guangli Xiu

Ozone and PM2.5 (all particulate matter with diameter of 2.5 µm or smaller) are currently two disturbing environmental issues in most cities of China. Black carbon (BC), mainly from incomplete combustion, is one of the most important components of PM2.5 because it can absorb light and contribute to haze pollution and global warming. Meanwhile, volatile organic compounds (VOCs) have become a major air pollutant due to their association with haze, ozone (O3), global warming and human health by direct or indirect processes. In this study, one year-long observation campaign of BC, VOCs and other conventional air pollutants was conducted in the Northern Region of the Hangzhou Bay (NRHB) in Shanghai, China. The results indicated that higher concentration of BC mainly occurred in the autumn and winter, especially in December. In December, higher BC concentrations were found when the air mass came from northwest where there is an important local freeway, or southwest where some adjacent southwest chemical industrial parks are located. Different from the characteristics of BC in urban areas reported by previous studies, the diurnal variation of BC exhibited three peaks, two of which coincided with the morning and evening rush hours which are related to the heavy diesel traffic from a nearby freeway, and the third peak was often found late at night, around 2 am, which might be associated with abnormal emissions from an industrial park or marine traffic in the ocean waterway. BC had weakly negative correlation with O3 and NO, and a strongly positive correlation with PM2.5, SO2, NO2 and NOx, which implies that some incomplete combustion sources might occur in the nearby regions. With regard to VOCs, BC had a strong positive correlation with alkane, alkenes, alkynes, aromatic and non-sulfur VOCs, particularly with aromatic organic matter. Unlike the stronger correlation with aromatics in the morning rush hours, a stronger correlation between BC and alkenes and alkynes during the evening rush hour was observed. The relationships between BC and VOCs, particularly with some specific VOCs species related to the neighboring chemical industrial park, demonstrated that the contribution of the surrounding chemical industrial parks to BC should not be neglected.


2017 ◽  
Author(s):  
Zilin Wang ◽  
Xin Huang ◽  
Aijun Ding

Abstract. Black carbon (BC) has been identified to play a critical role in aerosol-planet boundary layer (PBL) interaction and further deterioration of near-surface air pollution in megacities, which has been named as its dome effect. However, the impacts of key factors that influence this effect, such as the vertical distribution and aging processes of BC, and also the underlying land surface, have not been quantitatively explored yet. Here, based on available in-situ measurements of meteorology and atmospheric aerosols together with the meteorology-chemistry online coupled model, WRF-Chem, we conduct a set of parallel simulations to quantify the roles of these factors in influencing the BC's dome effect and surface haze pollution, and discuss the main implications of the results to air pollution mitigation in China. We found that the impact of BC on PBL is very sensitive to the altitude of aerosol layer. The upper level BC, especially those near the capping inversion, is more essential in suppressing the PBL height and weakening the turbulence mixing. The dome effect of BC tends to be significantly intensified as BC aerosol mixed with scattering aerosols during winter haze events, resulting in a decrease of PBL height by more than 25 %. In addition, the dome effect is more substantial (up to 15 %) in rural areas than that in the urban areas with the same BC loading, indicating an unexpected regional impact of such kind of effect to air quality in countryside. This study suggests that China's regional air pollution would greatly benefit from BC emission reductions, especially those from the elevated sources from the chimneys and also the domestic combustions in rural areas, through weakening the aerosol-boundary layer interactions that triggered by BC.


2016 ◽  
Author(s):  
Yu Hao Mao ◽  
Hong Liao

Abstract. We applied a global three-dimensional chemical transport model (GEOS-Chem) to examine the impacts of the East Asian monsoon on the interannual variations of mass concentrations and direct radiative forcing (DRF) of black carbon (BC) over eastern China (110–125° E, 20–45° N). With emissions fixed at the year 2010 levels, model simulations were driven by the Goddard Earth Observing System (GEOS-4) meteorological fields for 1986–2006 and the Modern Era Retrospective-analysis for Research and Applications (MERRA) meteorological fields for 1980–2010. During the period of 1986–2006, simulated JJA and DJF surface BC concentrations were higher in MERRA than in GEOS-4 by 0.30 µg m−3 (44 %) and 0.77 µg m−3 (54 %), respectively, because of the generally weaker precipitation in MERRA. We found that the strength of the East Asian summer monsoon (EASM, (East Asian winter monsoon, EAWM)) negatively correlated with simulated JJA (DJF) surface BC concentrations (r = –0.7 (–0.7) in GEOS-4 and –0.4 (–0.7) in MERRA), mainly by the changes in atmospheric circulation. Relative to the five strongest EASM years, simulated JJA surface BC concentrations in the five weakest monsoon years were higher over northern China (110–125° E, 28–45° N) by 0.04–0.09 µg m−3 (3–11 %), but lower over southern China (110–125° E, 20–27° N) by 0.03–0.04 µg m−3 (10–11 %). Compared to the five strongest EAWM years, simulated DJF surface BC concentrations in the five weakest monsoon years were higher by 0.13–0.15 µg m−3 (5–8 %) in northern China and by 0.04–0.10 µg m−3 (3–12 %) in southern China. The resulting JJA (DJF) mean all-sky DRF of BC at the top of the atmosphere were 0.04 W m−2 (3 %, (0.03 W m−2, 2 %)) higher in northern China but 0.06 W m−2 (14 %, (0.03 W m−2, 3 %)) lower in southern China. In the weakest monsoon years, the weaker vertical convection led to the lower BC concentrations above 1–2 km in southern China, and therefore the lower BC DRF in the region. The differences in vertical profiles of BC between the weakest and strongest EASM years (1998–1997) and EAWM years (1990–1996) reached up to –0.09 µg m−3 (–46 %) and –0.08 µg m−3 (–11 %) at 1–2 km in eastern China.


2018 ◽  
Vol 18 (22) ◽  
pp. 16345-16361 ◽  
Author(s):  
Derong Zhou ◽  
Ke Ding ◽  
Xin Huang ◽  
Lixia Liu ◽  
Qiang Liu ◽  
...  

Abstract. Anthropogenic fossil fuel (FF) combustion, biomass burning (BB) and desert dust are the main sources of air pollutants around the globe but are particularly intensive and important for air quality in Asia in spring. In this study, we investigate the vertical distribution, transport characteristics, source contribution and meteorological feedback of these aerosols in a unique pollution episode that occurred in eastern Asia based on various measurement data and modeling methods. In this episode, the Yangtze River Delta (YRD) in eastern China experienced persistent air pollution, dramatically changing from secondary fine particulate pollution to dust pollution in late March 2015. The Eulerian and Lagrangian models were conducted to investigate the vertical structure, transport characteristics and mechanisms of the multi-scale, multisource and multiday air pollution episode. The regional polluted continental aerosols mainly accumulated near the surface, mixed with dust aerosol downwash from the upper planetary boundary layer (PBL) and middle–lower troposphere (MLT), and further transported by large-scale cold fronts and warm conveyor belts. BB smoke from Southeast Asia was transported by westerlies around the altitude of 3 km from southern China, was further mixed with dust and FF aerosols in eastern China and experienced long-range transport over the Pacific. These pollutants could all be transported to the YRD region and cause a structure of multilayer pollution there. These pollutants could also cause significant feedback with MLT meteorology and then enhance local anthropogenic pollution. This study highlights the importance of intensive vertical measurement in eastern China and the downwind Pacific Ocean and raises the need for quantitative understanding of environmental and climate impacts of these pollution sources.


Sign in / Sign up

Export Citation Format

Share Document