scholarly journals Transport, mixing and feedback of dust, biomass burning and anthropogenic pollutants in eastern Asia: a case study

2018 ◽  
Vol 18 (22) ◽  
pp. 16345-16361 ◽  
Author(s):  
Derong Zhou ◽  
Ke Ding ◽  
Xin Huang ◽  
Lixia Liu ◽  
Qiang Liu ◽  
...  

Abstract. Anthropogenic fossil fuel (FF) combustion, biomass burning (BB) and desert dust are the main sources of air pollutants around the globe but are particularly intensive and important for air quality in Asia in spring. In this study, we investigate the vertical distribution, transport characteristics, source contribution and meteorological feedback of these aerosols in a unique pollution episode that occurred in eastern Asia based on various measurement data and modeling methods. In this episode, the Yangtze River Delta (YRD) in eastern China experienced persistent air pollution, dramatically changing from secondary fine particulate pollution to dust pollution in late March 2015. The Eulerian and Lagrangian models were conducted to investigate the vertical structure, transport characteristics and mechanisms of the multi-scale, multisource and multiday air pollution episode. The regional polluted continental aerosols mainly accumulated near the surface, mixed with dust aerosol downwash from the upper planetary boundary layer (PBL) and middle–lower troposphere (MLT), and further transported by large-scale cold fronts and warm conveyor belts. BB smoke from Southeast Asia was transported by westerlies around the altitude of 3 km from southern China, was further mixed with dust and FF aerosols in eastern China and experienced long-range transport over the Pacific. These pollutants could all be transported to the YRD region and cause a structure of multilayer pollution there. These pollutants could also cause significant feedback with MLT meteorology and then enhance local anthropogenic pollution. This study highlights the importance of intensive vertical measurement in eastern China and the downwind Pacific Ocean and raises the need for quantitative understanding of environmental and climate impacts of these pollution sources.

2018 ◽  
Author(s):  
Derong Zhou ◽  
Ke Ding ◽  
Xin Huang ◽  
Lixia Liu ◽  
Qiang Liu ◽  
...  

Abstract. Anthropogenic fossil fuel (FF) combustion, biomass burning (BB) and desert dust are main sources of air pollutants around the globe. The emission of the three sources in Asia are all very intensive and their influences on air quality is very important, especially in spring. In this study, we investigate the vertical distribution, transport characteristics, source contribution, and meteorological feedback of the dust, BB and FF aerosols in a unique pollution episode occurred in eastern Asia based on various measurement data and modelling methods. Ground-based observations indicated a persistent pollution episode dramatically changing from secondary fine particulate pollution to dust pollution in late March 2015 over the Yangtze River Delta (YRD) region, eastern China. The online-coupled meteorology–chemistry–aerosol modelling together with Lagrangian particle dispersion simulations were conducted to investigate the vertical structure, transport characteristics and mechanisms of the multi-scale, multi-source, and multi-day air pollution episode. The regional polluted continental aerosols mainly accumulated near surface by local anthropogenic emissions mixed with dust aerosols, downwash from the upper planetary boundary layer (PBL) and middle/lower troposphere (MLT), and further transported downwardly by large-scale cold fronts and warm conveyor belts. BB smoke from the Southeast Asia, mainly from forest burning in Indochina, were transported by westerlies around the altitude of 3 km from southern China to eastern China, further mixed with dust and FF aerosols in eastern China and experienced long-range transport over the subtropical Pacific Ocean. The three pollutant sources could all transport to eastern China, especially the YRD region around the latitude of 30° N, caused a structure of multi-layer pollutants and well mixed pollutants there. These solar absorption aerosols from FF, BB and dust could also cause significant feedback with MLT meteorology and then enhance local anthropogenic pollution. This study highlights the importance of intensive vertical measurement in the eastern China and the downwind Pacific Ocean with a focus of understanding the complex physical and chemical processes of various pollution sources, and also raises the needs of quantitative understanding of environmental and climate impacts of these pollution sources in regional even global scales.


2013 ◽  
Vol 13 (20) ◽  
pp. 10545-10554 ◽  
Author(s):  
A. J. Ding ◽  
C. B. Fu ◽  
X. Q. Yang ◽  
J. N. Sun ◽  
T. Petäjä ◽  
...  

Abstract. The influence of air pollutants, especially aerosols, on regional and global climate has been widely investigated, but only a very limited number of studies report their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect of how a mixed atmospheric pollution changes the weather with a substantial modification in the air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease in the solar radiation intensity by more than 70%, a decrease in the sensible heat by more than 85%, a temperature drop by almost 10 K, and a change in rainfall during both daytime and nighttime. Our results show clear air pollution–weather interactions, and quantify how air pollution affects weather via air pollution–boundary layer dynamics and aerosol–radiation–cloud feedbacks. This study highlights cross-disciplinary needs to investigate the environmental, weather and climate impacts of the mixed biomass burning and fossil fuel combustion sources in East China.


2013 ◽  
Vol 15 (2) ◽  
pp. 241-253 ◽  

The complex terrain basin of Amyntaio – Ptolemais – Kozani in Western Macedonia of Greece is an area characterized by increased industrial activity and therefore it demands continuous and assiduous environmental monitoring. A prolonged particulate matter air pollution episode was recorded in the area during November 2009. Basic meteorological aspects are analyzed, during the episode period. Daily and hourly PM10 and PM2.5 concentration measurements were used along with surface and lower atmosphere hourly meteorological parameters from 13 measuring stations. The observational data were supported by data produced by the meteorological component of an air pollution model. The overall analysis showed that the episode was primarily the result of the synoptic setting of the middle and lower troposphere. An Omega blocking pattern which gradually transformed to a high-over-low pattern prevailed over central and southern Europe during the episode’s period. The examination of the vertical wind field in the lower troposphere and appropriate stability indices, revealed a continuous absence of significant convection. The weak horizontal wind field near the surface and the reduced mixing height combined with the lack of synoptic forcing resulted in the trapping of the pollutants in the lower troposphere and the recording of increased airborne particulate matter concentrations. The radical change of the synoptic setting in the first days of December marked the end of the episode.


2019 ◽  
Author(s):  
Qiuji Ding ◽  
Jianning Sun ◽  
Xin Huang ◽  
Aijun Ding ◽  
Jun Zou ◽  
...  

Abstract. Aerosols can not only participate in fog formation by acting as condensation nuclei of droplets but also modify the meteorological conditions such as air temperature and moisture, planetary boundary layer height (PBLH) and regional circulation during haze event. The impact of aerosols on fog formation, yet to be revealed, can be critical in understanding and predicting of fog-haze event. In this study, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to investigate a heavy fog event during a multiday intense haze pollution episode in early December 2013 in the Yangtze River Delta (YRD) region in eastern China. Using the WRF-Chem model, we conducted four parallel numerical experiments to evaluate the roles of aerosol-radiation interaction (ARI), aerosol-cloud interaction (ACI), black carbon (BC) and none BC (non-BC) aerosols in the formation and maintenance of the heavy fog event. Only when the aerosols' feedback processes are considered can the model well capture the haze pollution and the fog event. We find that the ARI dominates this fog-haze episode while the effects of ACI are negligible. Our analyses shows that BC plays a more important role in fog formation than non-BC aerosols. The dome effect of BC leads to an increase of air moisture over the sea by reducing PBLH and weakening vertical mixing, thereby confining more water vapor in the near-surface layer. The strengthened daytime onshore flow by a cyclonic wind anomaly, induced by contrast temperature perturbation over land and sea, transports moister air to the YRD region, where the suppressed PBLH and weakened daytime vertical mixing maintain the high moisture level. Then the heave fog forms due to the surface cooling at night in this region. This study highlights the importance of anthropogenic emissions in the formation of advection-radiation fog in the polluted coastal areas.


2013 ◽  
Vol 13 (11) ◽  
pp. 5813-5830 ◽  
Author(s):  
A. J. Ding ◽  
C. B. Fu ◽  
X. Q. Yang ◽  
J. N. Sun ◽  
L. F. Zheng ◽  
...  

Abstract. This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. Case studies for typical O3 and PM2.5 episodes demonstrated that these episodes were generally associated with an air mass transport pathway over the mid-YRD, i.e., along the Nanjing–Shanghai axis with its city clusters, and showed that synoptic weather played an important role in air pollution, especially for O3. Agricultural burning activities caused high PM2.5 and O3 pollution during harvest seasons, especially in June. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5 pollution in this region. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions.


2012 ◽  
Vol 12 (1) ◽  
pp. 105-124 ◽  
Author(s):  
K. Huang ◽  
G. Zhuang ◽  
Y. Lin ◽  
J. S. Fu ◽  
Q. Wang ◽  
...  

Abstract. An intensive aerosol and gases campaign was performed at Shanghai in the Yangtze River Delta region over Eastern China from late March to early June 2009. This study provided a complementary picture of typical haze types and the formation mechanisms in megacities over China by using a synergy of ground-based monitoring, satellite and lidar observations. During the whole study period, several extreme low visibility periods were observed with distinct characteristics, and three typical haze types were identified, i.e. secondary inorganic pollution, dust, and biomass burning. Sulfate, nitrate and ammonium accounted for a major part of PM2.5 mass during the secondary inorganic pollution, and the good correlation between SO2/NOx/CO and PM2.5 indicated that coal burning and vehicle emission were the major sources. Large-scale regions with high AOD (aerosol optical depths) and low Ångström exponent were detected by remote-sensing observation during the dust pollution episode, and this episode corresponded to coarse particles rich in mineral components such as Al and Ca contributing 76.8% to TSP. The relatively low Ca/Al ratio of 0.75 along with the air mass backward trajectory analysis suggested the dust source was from Gobi Desert. Typical tracers for biomass burning from satellite observation (column CO and HCHO) and from ground measurement (CO, particulate K+, OC, and EC) were greatly enhanced during the biomass burning pollution episode. The exclusive linear correlation between CO and PM2.5 corroborated that organic aerosol dominated aerosol chemistry during biomass burning, and the high concentration and enrichment degree of arsenic (As) could be also partly derived from biomass burning. Aerosol optical profile observed by lidar demonstrated that aerosol was mainly constrained below the boundary layer and comprised of spheric aerosol (depolarization ratio <5%) during the secondary inorganic and biomass burning episodes, while thick dust layer distributed at altitudes from near surface to 1.4 km (average depolarization ratio = 0.122 &amp;pm; 0.023) with dust accounting for 44–55% of the total aerosol extinction coefficient during the dust episode. This study portrayed a good picture of the typical haze types and proposed that identification of the complicated emission sources is important for the air quality improvement in megacities in China.


2011 ◽  
Vol 11 (8) ◽  
pp. 21713-21767 ◽  
Author(s):  
K. Huang ◽  
G. Zhuang ◽  
Y. Lin ◽  
J. S. Fu ◽  
Q. Wang ◽  
...  

Abstract. An intensive aerosol and gases campaign has been performed at Shanghai in the Yangtze River Delta region over Eastern China from late March to early June 2009. This study provided a complementary picture of typical haze types and formation mechanisms in megacities over China by using a synergy of ground-based monitoring, satellite observation and lidar inversion. During the whole study period, several extreme low visibility periods were observed with distinct characteristics, and three typical haze types were identified, i.e. secondary inorganic pollution, dust, and biomass burning. Sulfate, nitrate and ammonium accounted for a major part of PM2.5 mass during the secondary inorganic pollution, and the good correlation between SO2/NOx/CO and PM2.5 indicated that coal burning and vehicle emission were the major sources. Large-scale regions with high AOD and low Ångström exponent were detected by remote-sensing observation during the dust pollution episode, and this episode corresponded to coarse particles rich in mineral components such as Al and Ca with mineral aerosol contributing 76.8 % to TSP. The relatively low Ca/Al ratio of 0.75 combined with the air mass backward trajectory analysis suggested the dust source from Gobi Desert. Typical tracers for biomass burning from satellite observation (column CO and HCHO) and from ground measurement (CO, particulate K+, OC, and EC) were greatly enhanced during the biomass burning pollution episode. The exclusive linear correlation between CO and PM2.5 corroborated that organic aerosol dominated aerosol chemistry during biomass burning, and the high concentration and enrichment degree of arsenic (As) could be also partly derived from biomass burning. Aerosol optical profile observed by lidar demonstrated that aerosol was mainly constrained below the boundary layer and comprised of spheric aerosol (depolarization ratio <5 %) during the secondary inorganic and biomass burning episodes, while during the dust episode thick dust layer distributed at altitudes from near the ground to 1.4 km (average depolarization ratio = 0.122 ± 0.023) with dust accounting for 44–55 % of the total aerosol extinction coefficient. This study had illustrated a good picture of the typical haze types and proposed that identification of the complicated emission sources was important for the air quality improvement in megacities in China.


2013 ◽  
Vol 13 (6) ◽  
pp. 14377-14403 ◽  
Author(s):  
A. J. Ding ◽  
C. B. Fu ◽  
X. Q. Yang ◽  
J. N. Sun ◽  
T. Petäjä ◽  
...  

Abstract. The influence of air pollutants, particularly aerosols, on regional and global climate is widely investigated, but only a very limited number of studies reports their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect how a mixed atmospheric pollution changes the weather with a substantial modification in air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70%, of sensible heat flux over 85%, a temperature drop by almost 10 K, and a change of rainfall during daytime and nighttime. Our results show clear air pollution – weather interactions, and quantify how air pollution affects weather with the influence of air pollution-boundary layer dynamics and aerosol-radiation-cloudy feedbacks. This study highlights a cross-disciplinary needs to study the environmental, weather and climate impact of the mixed biomass burning and fossil fuel combustion sources in the East China.


Sign in / Sign up

Export Citation Format

Share Document